首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiestrogens tamoxifen and monohydroxytamoxifen inhibited the estradiol-stimulated increase in prolactin synthesis by dispersed cells in culture derived from immature rat pituitary glands. Monohydroxytamoxifen had a relative binding affinity for the estrogen receptor similar to that of estradiol, whereas tamoxifen's relative binding affinity was approximately 3%. This was consistent with the observation that monohydroxytamoxifen was 30 times more potent than tamoxifen as an antiestrogen in vitro. To avoid the possibility that tamoxifen was fractionally metabolized to monohydroxytamoxifen by the pituitary cells, the p-methyl, p-chloro, and p-fluoro derivatives of tamoxifen that are unlikely to be converted to monohydroxytamoxifen were tested for activity. The substitution did not have a detrimental effect on their ability to inhibit the binding of [3H]estradiol to either rat uterine or pituitary gland estrogen receptors. Similarly, the derivatives of tamoxifen inhibited estradiol-stimulated prolactin synthesis at concentrations that were consistent with their relative binding affinities. Although it is clearly an advantage for tamoxifen to be metabolized to the more potent antiestrogen monohydroxytamoxifen, we have shown that this is not a prerequisite for the antiestrogenic actions of tamoxifen. With the direct actions of antiestrogens established, the pituitary cell system was validated for further structure-activity relationship studies. Overall, the inhibition of estradiol-stimulated prolactin synthesis by antiestrogens is competitive and reversible with estradiol, an effect that can be explained by interactions with the estrogen receptor system.  相似文献   

2.
These experiments utilized the estrogen antagonists CI-628, nafoxidine, and tamoxifen as tools to investigate potential molecular mechanisms of estrogen activation of female rat sexual behavior. Adult female rats, ovariectomized 4–7 days previously and matched for body weight, were administered single sc injections of one of the three antiestrogens, and the ability of the antagonists to block estrogen-induced sexual behavior, to deplete and replenish hypothalamic estrogen receptors, and to inhibit the binding of estradiol by hypothalamic nuclei 2 hr, or 1, 2, 4, or 7 days later was assessed. All three compounds produced a dose- and time-dependent inhibition of estrogen-activated lordosis, with tamoxifen being the most potent inhibitor. The three antiestrogens also caused prolonged depletion of hypothalamic estrogen receptors, but there was no correlation between receptor levels and the degree of inhibition of lordosis behavior at any time point following antiestrogen treatment. Rats showed high levels of sexual receptivity when antiestrogens were injected 2, 4, or 7 days before estrogen; however, hypothalamic estrogen receptors were still markedly (up to 70%) reduced at some of these time points. In contrast, there was a large (r = 0.67), significant correlation between the ability of all three agents to reduce [3H]estradiol binding by brain cell nuclei and their ability to reduce the display of estrogen-induced female sexual behavior. Antiestrogen injections which inhibited lordosis always decreased the level of specific estradiol binding by hypothalamic nuclei. These data indicate that delayed receptor replenishment does not adequately explain the antagonism of lordosis behavior by antiestrogens. The results presented here strongly point to the cell nucleus as the critical locus of receptor-mediated interactions which underlie estrogen and antiestrogen regulation of female sexual behavior.  相似文献   

3.
The effect of antiestrogens on the nuclear binding of the estrogen receptor   总被引:1,自引:0,他引:1  
T S Ruh  M F Ruh 《Steroids》1974,24(2):209-224
Experiments were designed to determine whether or not various antiestrogens in direct competition with estradiol-17β (E2) would inhibit the translocation of the estrogen receptor complex from the cytoplasm to nuclei in rat uterine tissue. Incubation of the antiestrogens CI-628, cis-clomiphene, U-11,100A and MER-25 with rat uteri caused the nuclear uptake of the antiestrogen receptor complex which was greatest for most antiestrogens at concentrations of 1 × 10?6 to 1 × 10?5M. At higher concentrations of CI-628, cis-clomiphene, and U-11,100A the nuclear binding of the antiestrogen receptor complex was greatly decreased. Incubation of the antiestrogens with E2 resulted in a dramatic inhibition of the nuclear uptake of the estrogen receptor. Trans-clomiphene, a weak estrogen, did not inhibit the movement of the uterine cytoplasmic receptor into the nuclear fraction.  相似文献   

4.
Species-specific pharmacology of antiestrogens: role of metabolism   总被引:4,自引:0,他引:4  
The nonsteroidal antiestrogen tamoxifen exhibits a paradoxical species-specific pharmacology. The drug is a full estrogen in the mouse, a partial estrogen/antiestrogen in humans and the rat, and an antiestrogen in the chick oviduct. Inasmuch as tamoxifen has antiestrogenic effects in vitro, differential metabolism of tamoxifen to estrogens might occur in the species in which it has an estrogenic pharmacology. Tamoxifen or its metabolite 4-hydroxytamoxifen could lose the alkylaminoethane side chain to form the estrogenic compound metabolite E or bisphenol. Sensitive metabolic studies with [3H]tamoxifen in chicks, rats, and mice identified 4-hydroxytamoxifen as the major metabolite, but no potentially estrogenic metabolites were observed. Athymic mice with transplanted human breast tumors can be used to study the ability of tamoxifen to stimulate target tissue or tumor growth. Estradiol caused the growth of transplanted MCF-7 breast cancer cells into solid tumors and a uterotrophic response. However, tamoxifen does not support tumor growth when administered alone, although it stimulates uterine growth. Since a similar profile of metabolites is sequestered in human and mouse tissues, these studies strongly support the concept that the drug can selectively stimulate or inhibit events in the target tissues of different species without metabolic intervention.  相似文献   

5.
The ability of several triphenylethylene antiestrogens to affect the modulation of gap junctions in rat uterine myometrial and serosal cells was examined in animals 60 days following hypophysectomy. Five daily injections of enclomiphene, zuclomiphene, tamoxifen, nafoxidine, CI 628 or CI 680 (500 micrograms per injection) promote uterine luminal epithelial cell hypertrophy characteristic of exogenous estrogen administration. These same compounds, however, fail to induce myometrial cell or increase the number of serosal cell gap junctions, respectively, which is also characteristic of exogenous estrogen treatment. Pretreatment of animals with antiestrogens blocks the ability of estradiol benzoate (E2 B) to induce gap junction formation in myometrial cells when followed by combined injections of E2 B and antiestrogens (both 250 micrograms) administered daily for 5 days. Therefore, with respect to the parameter of myometrial cell gap junction stimulation, all of the antiestrogens examined act as pure estrogen antagonists. These same antiestrogen pretreatments only weakly antagonized the ability of E2 B to modulate serosal cell gap junction membrane. These studies indicate the presence of different mechanisms for the estrogenic modulation of gap junctional membrane in myometrial and serosal cells.  相似文献   

6.
Two estrogen antagonists, CI-628 (CI) and tamoxifen (TX), were used to examine the relationship between estrogen priming of lordosis behavior and progestin receptor induction in the hypothalamus-preoptic area (HPOA) of ovariectomized female rats. Lordosis behavior was assessed by measuring lordosis quotients (LQ) in response to injection of 2 micrograms of estradiol benzoate (EB) followed 48 hr later by 500 micrograms of progesterone (P). Behavior testing began 4 hr after P injection. The effects of antiestrogens were assessed by injecting CI and TX (1-2 mg) from 0 to 48 hr prior to EB. Levels of cytosol progestin receptor in the HPOA were determined by quantifying the specific binding of 0.5 nM [3H]R5020 to cytosols from animals receiving the same EB and antiestrogen treatments used in behavioral testing. TX given concurrently with or CI given 2 hr before EB abolished both lordosis behavior and induction of HPOA progestin receptors. In contrast, CI given 12 hr prior to EB abolished lordosis but permitted a 95% elevation in the concentration of progestin binding sites in the HPOA. TX or CI given 48 hr before EB resulted in moderate levels of lordosis (mean LQs from 56 to 69) and induction of HPOA progestin receptors from 85 to 130% above noninjected controls. However, CI given 24 hr prior to EB produced less than a 40% increase in brain R5020 binding even though lordosis behavior was equivalent to that seen in the 48-hr animals (mean LQ = 53). These data indicate that the effects of antiestrogens on female sexual behavior and on the synthesis of brain progestin receptors depend on which antiestrogen is used and the time interval between administration of estrogen and antiestrogen. They also demonstrate that under some conditions estrogen induction of cytosol progestin receptors in the HPOA can be dissociated from estrogen priming of lordosis behavior in rats.  相似文献   

7.
Oxygenated derivatives of cholesterol are known to exhibit a number of biological activities including the inhibition of cholesterol biosynthesis and of cell proliferation, but their mechanism of action remains unclear. Previous studies have identified a cytosolic protein which binds 25-hydroxycholesterol, as well as several other oxysterols, with high affinity, possibly mediating some of their effects. We now report the existence of a high-affinity oxysterol binding site in rat liver microsomes which is distinct from the cytosolic binding protein. Among the oxygenated sterols examined, 5 alpha-cholestan-3 beta-ol-7-one (7-ketocholestanol) had the highest affinity for this microsomal binding site (Kd = 2.7 nM). Using 7-keto[3H]cholestanol as the radioactive ligand, we found that binding of this oxysterol to the microsomal binding site was saturable and reversible and was displaceable by the following oxysterols in descending order of potency: 7-ketocholestanol greater than 6-ketocholestanol greater than 7 beta-hydroxycholesterol = 7-ketocholesterol greater than cholesten-3 beta,5 alpha, 6 beta-triol = 7 alpha-hydroxycholesterol greater than 4-cholesten-3-one. All other sterols studied, including, notably, 25-hydroxycholesterol, had little or no inhibitory effect on 7-keto[3H]cholestanol binding. Additional studies revealed that the microsomal oxysterol binding site was probably identical to the antiestrogen binding site described by other workers. First, saturation analysis and kinetic studies demonstrated that the antiestrogen tamoxifen competed directly with 7-keto[3H]cholestanol for the same binding site. Second, the ability of different oxysterols and antiestrogens to inhibit 7-keto[3H]cholestanol binding to the microsomal binding site paralleled their ability to inhibit [3H]tamoxifen binding to the antiestrogen binding site. Third, the tissue distribution of binding sites for 7-keto[3H]cholestanol was similar to that of the antiestrogen binding site. We conclude that: (1) in rat liver microsomes there are high-affinity oxysterol binding sites whose ligand specificity is different from that of the cytosolic oxysterol binding protein; and (2) the microsomal oxysterol binding site is probably identical to the antiestrogen binding site. The biological significance of these observations remains to be explored.  相似文献   

8.
Administration of the nonsteroidal antiestrogen tamoxifen to cockerels results in dose- and time-dependent decreases in the levels of free and esterified cholesterol, phospholipids, and triglycerides in serum and in very low density and low density lipoprotein fractions. Similar changes can be elicited using a tamoxifen analogue, N,N-diethyl-2-[(4-phenylmethyl)phenoxy]ethanamine.HCl (DPPE). Like tamoxifen, this compound is capable of binding antiestrogen binding sites and exhibits a relative binding affinity of 90% compared with tamoxifen (Ki approximately 4-5 nM). Unlike tamoxifen, DPPE shows no measureable affinity for the cockerel liver nuclear estrogen receptor. Further, DPPE exhibits no estrogen agonist or antagonist activity as measured at the level of synthesis of apolipoprotein II of very low density lipoprotein by liver, synthesis of ovalbumin by oviduct, or growth of the oviduct. Although it is possible that the lipid-lowering effects of tamoxifen result from the opposition of endogenous estrogen action in the cockerel, the similarity of the effects of tamoxifen and DPPE on the lipid profiles suggests common mechanisms that do not involve the estrogen receptor.  相似文献   

9.
10.
Animal and human tissues contain a microsomal protein that binds nonsteroidal antiestrogens with high affinity and specificity. The functions of these binding sites and the identity of their natural ligands are unknown. Following a report that certain sterols inhibit [3H]tamoxifen binding to this site, we attempted to define the structural requirements for maximal inhibition of [3H]tamoxifen binding to rat liver antiestrogen-binding sites. Our studies identified 5 alpha-cholestan-3 beta-ol-7-one (7-ketocholestanol) as the most potent sterol, having an inhibitory activity that was 12% that of unlabeled tamoxifen and an equilibrium dissociation constant of 6.3 nM. Structural features that appeared important for the inhibitory activity of this sterol include the presence of i) a hydrocarbon side chain at C17; ii) an oxygen function at C7; iii) a hydroxyl group at C3; and iv) the absence of a double-bond between C5 and C6. Saturation analysis and kinetic studies of [3H]tamoxifen binding in the presence of varying concentrations of 7-ketocholestanol clearly indicated that this sterol competed directly with tamoxifen for the antiestrogen-binding site. Unlike tamoxifen, this sterol did not bind to the estrogen receptor. These features make 7-ketocholestanol a potentially valuable tool for studying the properties and functions of this site.  相似文献   

11.
Our laboratory has previously reported that antiestrogen binding to molybdate-stabilized non-transformed estrogen receptor results in a larger form of the receptor in 0.3 M KCl when compared with estrogen bound receptor. Estradiol promoted the formation of monomers in the presence of 0.3 M KCl whereas antiestrogen appeared to promote dimer formation. We have extended these studies examining the rabbit uterine salt-transformed estrogen receptor partially purified by DEAE-cellulose chromatography. We previously demonstrated that estrogen receptor prepared in this way bound to different sites on partially deproteinized chromatin subfractions or reconstituted chromosomal protein/DNA fractions when the receptor was complexed with estrogen vs antiestrogen. Analysis of these receptor preparations indicated that DEAE-cellulose step-elution resulted in a peak fraction which sedimented as a single 5.9S peak in 5-20% sucrose density gradients containing 0.3 M KCl for receptor bound by the antiestrogens H1285 and trans-hydroxytamoxifen. However, receptor bound by estradiol sedimented as 4.5S. These receptor complexes bound DNA-cellulose indicating that these partially purified receptors were transformed. DEAE rechromatography or agarose gel filtration of the partially purified antiestrogen-receptor complexes resulted in significant dissociation of the larger complex into monomers. Incubations of 5.9S antiestrogen-receptor complexes with antibodies against nontransformed steroid receptor-associated proteins (the 59 and 90 kDa proteins) did not result in the interaction of this larger antiestrogen-receptor complex with these antibodies (obtained from L. E. Faber and D. O. Toft, respectively). Our results support the concept that antiestrogen binding induces a different receptor conformation which could affect monomer-dimer equilibrium, thus rendering the antiestrogen-receptor complex incapable of inducing complete estrogenic responses in target tissues.  相似文献   

12.
The binding of [3H]estradiol and [3H]hydroxytamoxifen to the cytosol and microsomal fractions of several human breast tumors was investigated. By washing microsomal membranes with a KCl-free or a KCl-containing medium we could distinguish between intrinsic, extrinsic and contaminant estradiol binding sites in these membranes. We observed that treatment of the microsomes with low salt medium removes about 80% of the total estradiol binding sites, whereas 20% are not extractable. The concentration of unextractable [3H]estradiol binding sites in the microsomes varies in proportion to the level of cytosolic estrogen receptors (ER). About 10% of the total extranuclear specific estrogen binding sites was consistently found tightly associated to the microsomal fraction, which displays an affinity for estradiol (Kd = 0.1-0.6 nM) similar to that of the cytosolic ER. The displacement of [3H]estradiol with unlabeled hormone or with the antiestrogens, nafoxidine, enclomiphene and tamoxifen (TAM) exhibits identical IC50 values either in the cytosol or in the microsomal membranes. On the other hand, the microsomal fraction of breast tumors also binds [3H]hydroxyTAM, but with higher capacity and lower affinity than those of the cytosolic fraction. Furthermore, we did not observe correlation between the concentrations of ER and of antiestrogen binding sites (AEBS) in the tumors. These results indicate that microsomal membranes of human breast tumors contain estrogen binding sites which may be related to the cytosol ER recycling and that specific AEBS are predominantly localized in this membrane system. Furthermore, it is shown that the magnitude of estradiol binding to microsomes depends on the ER positive degree of the tumors, whereas the magnitude of the antiestrogen binding to the microsomes is independent of the ER status of the tumors.  相似文献   

13.
S Aliau  H Mattras  E Richard  J L Borgna 《Biochemistry》1999,38(45):14752-14762
The efficiency of 11beta-[p(aziridinylethoxy)phenyl]estradiol 1 and 11beta-[p(aziridinylpentoxy)phenyl]estradiol 2 affinity labeling of the estrogen receptor alpha (ERalpha) was evaluated on the basis of their capacity to inhibit [(3)H]estradiol binding to lamb and human ERalphas. Relative to RU 39 411 (11beta-[p(dimethylaminoethoxy)phenyl]estradiol), the most closely related and chemically inert analogue of 1, the two electrophiles irreversibly inhibited [(3)H]estradiol binding to the lamb ERalpha. The fact that the compound effects were prevented (i) when the ERalpha hormone-binding site was occupied by estradiol and (ii) when the ERalpha-containing extracts were pretreated with methyl methanethiosulfonate (an SH-specific reagent) suggested that the compounds specifically alkylated ERalpha at cysteine residues. Wild-type human ERalpha was alkylated as efficiently as lamb ER, whereas the quadruple cysteine --> alanine mutant, in which all cysteines of the hormone-binding domain (residues 381, 417, 447, and 530) were changed to alanines, showed no significant electrophile labeling. The single C530A mutant was much less sensitive to the action of the electrophiles than the three other single mutants (C381A, C417A, and C447A). Moreover, analysis of the three double mutants (C381A/C530A, C417A/C530A, and C447A/C530A) showed that only the C381A/C530A mutant was less susceptible to electrophile labeling than the single C530A mutant. We concluded that in the hormone-binding pocket C530 was the main covalent attachment site of aziridines 1 and 2, whereas C381 could be a secondary site. These results agreed with the crystal structure of the hormone-binding domain of the human ERalpha bound to estrogen or antiestrogen, since C381 and C530 appeared to be (i) located in structural elements involved in delineating the hormone-binding pocket and (ii) in spatial proximity to each other, which was closer in the crystal structure of the ER:antiestrogen complex than in that of the ER:estrogen complex. Since C530 and C381 were also the main and secondary covalent attachment sites of tamoxifen aziridine (a nonsteroidal affinity-labeling agent), we propose a selective mode of superimposition of tamoxifen-class antiestrogens with RU 39 411-class antiestrogens, which could account for the relative positioning of the two types of ligands in the ERalpha hormone-binding pocket.  相似文献   

14.
The binding characteristics of [3H]estradiol and 4-[3H]hydroxytamoxifen (a powerful estradiol antagonist) in the chick oviduct cytosol was analyzed by sucrose gradient centrifugation and dissociation kinetics experiments at 28°C. Heating the cytoplasmic estradiol-estrogen receptor complexes led to the ‘transformation’ of the receptor; as with the estrogen receptor in other target tissues and species, the transformed receptor sedimented in the 5 S region of sucrose gradients containing 0.4 M KCI and had a slower rate of dissociation of bound estradiol. Upon heating, the cytoplasmic 4-hydroxytamoxifen complexes also appeared to undergo similar changes in their physical states as analyzed by sedimentation rates and dissociation kinetics, and we conclude that antiestrogen can transform the receptor. Sodium molybdate inhibited the temperature mediated changes with both estrogen and antiestrogen complexes. Slight but consistent differences in the sedimentation coefficient and rate of ligand dissociation were observed between the complexes formed by estradiol and 4-hydroxytamoxifen but the relevance to opposite biological activities remains unknown.  相似文献   

15.
The triphenylethylene antiestrogens are very potent antagonists of estrogen action in the chicken and manifest little agonist activity compared to their action in other species. The estrogen antagonism is most probably mediated by the estrogen receptor, to which tamoxifen binds with a Ki of 2.6 nM. Tamoxifen is readily metabolized by liver to 4-hydroxytamoxifen, which binds the liver nuclear estrogen receptor with a Ki of 0.1 nM. The Kd of the receptor is 0.7 nM. Estrogen receptor concentrations in liver from immature chickens are relatively low both in nuclear and cytosol fractions. Treatment with estradiol results in 10-fold up-regulation of the nuclear levels to give a total receptor concentration of about 2 pmol/g tissue. Tamoxifen can promote this up-regulation to a limited extent, but interpretation of experimental results is compromised by difficulties with exchange assays in the face of the very high binding affinity of 4-hydroxytamoxifen. Tamoxifen also binds with high affinity (Kd 2-4 nM) and distinctive specificity to antiestrogen binding sites (AEBS) present in a wide variety of chicken tissues and in the highest concentration in the liver (800 pmol/g tissue). Liver and serum contain ether-soluble components which can compete for binding of [3H]tamoxifen to the AEBS. The serum AEBS inhibitory activity is chromatographically heterogeneous and is associated with a sterol-like fraction as well as with a fatty-acid-containing fraction. Tamoxifen treatment of cockerels results in dose- and time-dependent decreases in serum free and esterified cholesterol, and in phospholipids and triglycerides. These changes may reflect estrogen-receptor-independent interactions of tamoxifen.  相似文献   

16.
An estrogen binding site of moderate affinity (Kd approximately 10 nM) and high capacity (approximately 25-70 pmol/g of tissue) was measured in DES-stimulated chick oviduct cytosol. Saturation analysis by [3H]estradiol exchange demonstrated that this binding site displayed sigmoidal binding characteristics suggesting a cooperative binding mechanism. Competition analysis with a number of compounds demonstrated that the bioflavonoid luteolin was a better competitor for binding to type II sites in chick than either estradiol or DES. Steroid specificity was demonstrated by the inability of 17 alpha-estradiol, progesterone, testosterone, corticosterone, and the triphenylethylene antiestrogen nafoxidine (U-1100A) to compete for [3H]-17 beta-estradiol binding to chick oviduct cytosol preparations. In addition, the binding site appeared to be sensitive to sulfhydryl reducing reagents as evidenced by a 75% reduction in binding activity in the presence of dithiothreitol. Both prelabeling and postlabeling procedures used in conjunction with Sephacryl S-300 chromatography resulted in a single major peak of type II binding activity representing a molecular weight in the 40,000 range. Type II binding activity was recoverable after precipitation with ammonium sulfate, and this material was subjected to a variety of column chromatography procedures in order to achieve further purification of the type II site. Significant purification of the site was achieved with a bioflavonoid-Sepharose (quercetin-Sepharose) affinity matrix. The purified type II sites eluted from quercetin-Sepharose displayed the same sigmoidal binding curves characteristic of native cytosol.  相似文献   

17.
We have examined the effects of reversibly and irreversibly binding estrogenic and antiestrogenic ligands for the estrogen receptor on pS2 RNA accumulation in MCF-7 human breast cancer cells and on pS2-chloramphenicol acetyl transferase (CAT) fusion gene expression in transfected MCF-7 cells. In MCF-7 cells grown in the absence of estrogens, the reversibly binding estrogen, estradiol, and the affinity labeling estrogen, ketononestrol aziridine, KNA, evoked a 13-fold increase in pS2 RNA level. The reversibly binding antiestrogen trans-hydroxytamoxifen and the affinity labeling antiestrogens tamoxifen aziridine or desmethylnafoxidine aziridine behaved as partial agonists/antagonists. In thymidine kinase-chloramphenicol acetyltransferase (tk-CAT) fusion genes containing a 1000 base pair fragment of the pS2 5'-flanking region encompassing the estrogen responsive element of the gene [pS2 (-1100/-90) tk-CAT], estradiol and ketononestrol aziridine evoked a marked stimulation of CAT activity and, in transfected cells grown in both the presence or absence of the weak estrogen phenol red, the antiestrogens behaved as partial agonists/antagonists. This pS2 5'-flanking region displayed both estrogen-dependent and estrogen-independent enhancer activity as monitored by stimulation of CAT activity. Hormonal regulation of the transfected pS2 fusion gene was similar to that observed in the native pS2 gene of MCF-7 cells; however, antiestrogens, while still partial agonists-antagonists, were relatively more agonistic on the transfected fusion gene than on the native gene. One antiestrogen (ICI 164,384) that behaved as a pure estrogen antagonist on the native gene was a partial agonist-antagonist of pS2 gene expression in the plasmid. This study illustrates that the hormonal regulation of the pS2 gene, as characterized by the agonist-antagonist balance of estrogens and antiestrogens, is influenced by the DNA context of the pS2 estrogen responsive element. Also, the fact that estrogens and antiestrogens that form covalent bonds with the estrogen receptor modulate activity of the native pS2 gene and the pS2-tk-CAT fusion gene in a manner similar to that of their reversibly binding counterparts suggests that it may be possible to use these irreversibly binding ligands to follow the interaction of hormone-receptor complexes with regions regulating estrogenic stimulation of the pS2 gene.  相似文献   

18.
The relative binding affinities (RBA) of various compounds for the triphenylethylene antiestrogen binding sites (TABS) were examined. The ability of tamoxifen to inhibit the binding of [3H]tamoxifen to salt extracted (0.4 M KCl) TABS from rat liver nuclei was used as a standard by which other compounds were compared (tamoxifen RBA, 100; Kd approximately 1 nM). Nafoxidine was the most effective triphenylethylene compound used (RBA 333; Kd approximately 0.3 nM) whereas the RBA of zuclomiphene and enclomiphene was not different from tamoxifen. MER-29 was the weakest inhibitor of the triphenylethylene derivatives (RBA 10; Kd approximately 10 nM). Trifluoperazine, chlorpromazine and the anti-calmodulin drugs W-13 and W-12 had RBA's of 25, 1, 1 and 0.1 respectively. The binding affinities of cholesterol and 7-ketocholesterol were significant (Kd approximately 22 nM) while the steroid hormones, estradiol, testosterone, progesterone and corticosterone displayed not observable affinity. Various compounds obtained from Merrill Dow Pharmaceuticals and the Eli Lilly Company which contained alklaminoethoxy side chains linked to aromatic ring structures had RBA's ranging from 1-0.3. We conclude, as other investigators have also concluded, that the similar binding affinities of various triphenylethylene antiestrogens for TABS and their divergent activities as antiestrogens makes it unlikely that TABS are directly involved in estrogen antagonism. The moderate but significant affinity of TABS for trifluoperazine and other drugs thought to be involved in calmodulin regulation indicates that TABS may be a linked in some way to calmodulin function. The binding of cholesterol and 7-ketocholesterol is also significant and may indicate that TABS are involved in cholesterol metabolism.  相似文献   

19.
This series of experiments sought to determine whether conversion of androgen to estrogen is important in the activation of male sexual behavior in quail by seeing if an antiestrogen will block androgen stimulated copulation in this species. Experiment I compared the ability of two antiestrogens, MER-25 (5 mg/day) and CI-628 (2 mg/day), to block estrogen stimulated characteristics in female quail. Both treatments greatly reduced oviduct growth in “photically castrated” females given estradiol benzoate (EB, 50 μg/day), but only CI-628 reduced receptivity in these birds. In Experiment II surgically castrated males given 50 μg/day EB together with 2 mg/day CI-628 were much less receptive than castrated males given EB alone, and in addition copulated in fewer tests. In Experiments III, IV, and V, castrated males given testosterone propionate (TP) together with CI-628 were compared with males given TP alone. The ability of CI-628 to suppress TP-stimulated copulation increased with increasing CI/TP dosage ratio, and at the highest ratio (4:1), CI-628 effectively blocked copulation in five out of seven birds. Those birds that did copulate did so in fewer tests and performed fewer cloacal contact movements. CI-628 had no antiandrogenic effects in these experiments. These results suggest that estrogens may be important active metabolites of testosterone with respect to quail copulation.  相似文献   

20.
Analysis of rat uterine cytosol for Tamoxifen binding reveals that the saturable binding sites are only partially inhibited by estradiol-17β. Partial thermal denaturation of the cytosol at 30° C for 2 h 30 allows the characterization of a high affinity (Kd = 3.3 × 10?9M) saturable Tamoxifen class of binding sites insensitive to estradiol-17β while remaining sensitive to the antiestrogens CI628 and Nafoxidine. The uterine concentration of these binding sites is lower in the uterus of immature or castrated animals, increases from metestrus to proestrus and reaches a peak on the day of estrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号