首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
2.
Ubiquitin cross-reactive protein (UCRP) is a functional ubiquitin homolog synthesized by the ruminant endometrium in response to conceptus-derived interferon-tau (IFNtau). Progesterone is required for IFNtau to exert antiluteolytic actions on the endometrium. Therefore, this study was designed to determine whether progesterone is requisite for IFNtau induction of UCRP expression within the ovine uterus. Cyclic ewes were ovariectomized and fitted with intrauterine (i.u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 137.316 (ZK; progesterone receptor antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. In P-treated ewes, roIFNtau increased endometrial UCRP mRNA and protein levels. However, administration of ZK to ewes ablated roIFNtau induction of UCRP. Recombinant ovine IFNtau induced expression of UCRP mRNA in progestinized endometrial luminal (LE) and glandular (GE) epithelium as well as in both stratum compactum and spongiosum layers of the stroma (ST). Progesterone receptor protein was located in endometrial ST, but not in LE and GE from these ewes. Results support the hypothesis that progesterone is required for IFNtau induction of type I IFN-responsive genes, such as UCRP, in the ruminant uterus.  相似文献   

3.
4.
5.
The enzymes which comprise the 2',5'-oligoadenylate synthetase (OAS) family are interferon (IFN) stimulated genes which regulate ribonuclease L antiviral responses and may play additional roles in control of cellular growth and differentiation. This study characterized OAS expression in the endometrium of cyclic and pregnant ewes as well as determined effects of IFNtau and progesterone on OAS expression in cyclic or ovariectomized ewes and in endometrial epithelial and stromal cell lines. In cyclic ewes, low levels of OAS protein were detected in the endometrial stroma (S) and glandular epithelium (GE). In early pregnant ewes, OAS expression increased in the S and GE on Day 15. OAS expression in the lumenal epithelium (LE) was not detected in uteri from either cyclic or pregnant ewes. Intrauterine administration of IFNtau stimulated OAS expression in the S and GE, and this effect of IFNtau was dependent on progesterone. Ovine endometrial LE, GE, and S cell lines responded to IFNtau with induction of OAS proteins. In all three cell lines, the 40/46-kDa OAS forms were induced by IFNtau, whereas the 100-kDa OAS form appeared to be constitutively expressed and not affected by IFNtau. The 69/71-kDa OAS forms were induced by IFNtau in the S and GE cell lines, but not in the LE. Collectively, these results indicate that OAS expression in the endometrial S and GE of the early pregnant ovine uterus is directly regulated by IFNtau from conceptus and requires the presence of progesterone.  相似文献   

6.
7.
Ubiquitin cross-reactive protein (UCRP) is a 17-kDa protein that shows cross-reactivity with ubiquitin antisera and retains the carboxyl-terminal Leu-Arg-Gly-Gly amino acid sequence of ubiquitin that ligates to, and directs degradation of, cytosolic proteins. It has been reported that bovine endometrial UCRP is synthesized and secreted in response to conceptus-derived interferon-tau (IFNtau). In the present studies, UCRP mRNA and protein were detected in ovine endometrium. Ovine UCRP mRNA was detectable on Day 13, peaked at Day 15, and remained high through Day 19 of pregnancy. The UCRP mRNA was localized to the luminal epithelium (LE), stromal cells (ST) immediately beneath the LE, and shallow glandular epithelium (GE) on Day 13, but it extended to the deep GE, deep ST, and myometrium of uterine tissues by Day 15 of pregnancy. Western blotting revealed induction of UCRP in the endometrial extracts from pregnant, but not cyclic, ewes. Ovine UCRP was also detected in uterine flushings from Days 15 and 17 of pregnancy and immunoprecipitated from Day 17 pregnant endometrial explant-conditioned medium. Treatment of immortalized ovine LE cells with recombinant ovine (ro) IFNtau induced cytosolic expression of UCRP, and intrauterine injection of roIFNtau into ovariectomized cyclic ewes induced endometrial expression of UCRP mRNA. These results are the first to describe temporal and spatial alterations in the cellular localization of UCRP in the ruminant uterus. Collectively, UCRP is synthesized and secreted by the ovine endometrium in response to IFNtau during early pregnancy. Because UCRP is present in the uterus and uterine flushings, it may regulate endometrial proteins associated with establishment and maintenance of early pregnancy in ruminants.  相似文献   

8.
Galectins are a family of secreted animal lectins with biological roles in cell adhesion and migration. In sheep, galectin 15 (LGALS15) is expressed specifically in the endometrial luminal (LE) and superficial glandular (sGE) epithelia of the uterus in concert with blastocyst elongation during the peri-implantation period. The present study examined LGALS15 expression in the uterus of cattle, goats, and pigs. Although the bovine genome contains an LGALS15-like gene, expressed sequence tags encoding LGALS15 mRNA were found only for sheep, and full-length LGALS15 cDNAs were cloned only from endometrial total RNA isolated from pregnant sheep and goats, but not pregnant cattle or pigs. Ovine and caprine LGALS15 were highly homologous at the mRNA (95%) and protein (91%) levels, and all contained a conserved carbohydrate recognition domain and RGD recognition sequence for integrin binding. Endometrial LGALS15 mRNA levels increased after Day 11 of both the estrous cycle and pregnancy, and were considerably increased after Day 15 of pregnancy in goats. In situ hybridization detected abundant LGALS15 mRNA in endometrial LE and sGE of early pregnant goats, but not in cattle or pigs. Immunoreactive LGALS15 protein was present in endometrial epithelia and conceptus trophectoderm of goat uteri and detected within intracellular crystal structures in trophectoderm and LE. Recombinant ovine and caprine LGALS15 proteins elicited a dose-dependent increase in ovine trophectoderm cell attachment in vitro that was comparable to bovine fibronectin. These results support the hypothesis that LGALS15 is uniquely expressed in Caprinae endometria and functions as an attachment factor important for peri-implantation blastocyst elongation.  相似文献   

9.
The extracellular matrix protein osteopontin (OPN) is a component of histotroph that increases in uterine flushings from pregnant ewes during the peri-implantation period and is localized on the apical surfaces of the uterine luminal epithelium (LE) and conceptus trophectoderm (Tr). The potential involvement of OPN in the implantation adhesion cascade in sheep was investigated by examining temporal, spatial, and potential functional relationships between OPN, Muc-1, and integrin subunits during the estrous cycle and early pregnancy. Immunoreactive Muc-1 was highly expressed at the apical surfaces of uterine luminal (LE) and glandular epithelium (GE) in both cycling and pregnant ewes but was decreased dramatically on LE by Day 9 and was nearly undetectable by Day 17 of pregnancy when intimate contact between LE and Tr begins. In contrast, integrin subunits alpha(v), alpha(4), alpha(5), beta(1), beta(3), and beta(5) were constitutively expressed on conceptus Tr and at the apical surface of uterine LE and GE in both cyclic and early pregnant ewes. The apical expression of these subunits could contribute to the apical assembly of several OPN receptors including the alpha(v)beta(3), alpha(v)beta(1), alpha(v)beta(5), alpha(4)beta(1), and alpha(5)beta(1) heterodimers on endometrial LE and GE, and conceptus Tr in sheep. Functional analysis of potential OPN interactions with conceptus and endometrial integrins was performed on LE and Tr cells in vitro using beads coated with OPN, poly-L-lysine, or recombinant OPN in which the Arg-Gly-Asp sequence was replaced with RGE or RAD. Transmembrane accumulation of talin or alpha-actinin at the apical surface of uterine LE and conceptus Tr cells in contact with OPN-coated beads revealed functional integrin activation and cytoskeletal reorganization in response to OPN binding. These results provide a physiological framework for the role of OPN, a potential mediator of implantation in sheep, as a bridge between integrin heterodimers expressed by Tr and uterine LE responsible for adhesion for initial conceptus attachment.  相似文献   

10.
Osteopontin (OPN) is a phosphorylated and glycosylated, secreted protein that is present in various epithelial cells and biological fluids. On freezing and thawing or treatment with proteases, the native 70-kDa protein gives rise to 45- and 24-kDa fragments. Secreted OPN functions as an extracellular matrix (ECM) protein that binds cell surface receptors to mediate cell-cell adhesion, cell-ECM communication, and cell migration. In sheep and humans, OPN is proposed to be a secretory product of uterine glandular epithelium (GE) that binds to uterine luminal epithelium (LE) and conceptus trophectoderm to mediate conceptus attachment, which is essential to maintain pregnancy through the peri-implantation period. Cell-cell adhesion, communication, and migration likely are important at the interface between uterus and placenta throughout pregnancy, but to our knowledge, endometrial and/or placental expression of OPN beyond the peri-implantation period has not been documented in sheep. Therefore, the present study determined temporal and spatial alterations in OPN mRNA and protein expression in the ovine uterus between Days 25 and 120 of pregnancy. The OPN mRNA in total ovine endometrium increased 30-fold between Days 40 and 80 of gestation. In situ hybridization and immunofluorescence analyses revealed that the predominant source of OPN mRNA and protein throughout pregnancy was the uterine GE. Interestingly, the 45-kDa form of OPN was detected exclusively, continuously, and abundantly along the apical surface of LE, on conceptus trophectoderm, and along the uterine-placental interface of both interplacentomal and placentomal regions through Day 120 of pregnancy. The 45-kDa OPN is a proteolytic cleavage fragment of the native 70-kDa OPN, and it is the most abundant form in uterine flushes during early pregnancy. The 45-kDa OPN is more stimulatory to cell attachment and cell migration than the native 70-kDa protein. Collectively, the present results support the hypothesis that ovine OPN is a component of histotroph secreted by the uterine GE that accumulates at the uterine-placental interface to influence maternal-fetal interactions throughout gestation in sheep.  相似文献   

11.
Secreted phosphoprotein one (SPP1, osteopontin) may regulate conceptus implantation and placentation. We investigated effects of progesterone (P(4)) and the conceptus on expression and localization of SPP1 in the ovine uterus. Steady-state levels of SPP1 mRNA in the endometrium of unilaterally pregnant ewes did not differ significantly between nongravid and gravid horns within their respective days of pregnancy; however, levels did increase as pregnancy progressed. SPP1 mRNA was detectable in the glandular epithelium (GE) of both nongravid and gravid horns via in situ hybridization. SPP1 protein was localized to the apical surface of the luminal epithelium of both nongravid and gravid uterine horns. Gravid horns exhibited extensive stromal SPP1 on Days 40 through 120, whereas SPP1 was markedly lower in the stroma of nongravid uterine horns through Day 80 of pregnancy. By Day 120, stromal expression of SPP1 between nongravid and gravid horns was similar. Long-term P(4) treatment of ovariectomized ewes induced SPP1 in the uterine stroma and GE. A bioactive 45-kDa SPP1 fragment was purified from uterine secretions and promoted ovine trophectoderm cell attachment in vitro. Interestingly, increased stromal cell expression of SPP1 was positively associated with vascularization as assessed by von Willebrand factor staining. Finally, ovine uterine artery endothelial cells produced SPP1 during outgrowth into three-dimensional collagen matrices in an in vitro model system that recapitulates angiogenesis. Collectively, P(4) induces and the conceptus further stimulates SPP1 in uterine GE and stroma, where SPP1 likely influences histotrophic and hematotrophic support of conceptus development.  相似文献   

12.
Progesterone modulation of osteopontin gene expression in the ovine uterus   总被引:12,自引:0,他引:12  
Osteopontin (OPN) is an acidic phosphorylated glycoprotein component of the extracellular matrix that binds to integrins at the cell surface to promote cell-cell attachment and cell spreading. This matrix constituent is a ligand that could potentially bind integrins on trophectoderm and endometrium to facilitate superficial implantation and placentation. OPN mRNA increases in the endometrial glandular epithelium (GE) of early-pregnant ewes, and OPN protein is secreted into the uterine lumen. Therefore, progesterone and/or interferon-tau (IFNtau) may regulate OPN expression in the uterine GE. Cyclic ewes were ovariectomized and fitted with intrauterine (i. u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 136.317 (ZK; progesterone receptor [PR] antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. Progesterone induced the expression of endometrial OPN mRNA in the GE and increased secretion of a 45-kDa OPN protein from endometrial explants maintained in culture for 24 h. Administration of ZK ablated progesterone effects. Intrauterine infusion of roIFNtau did not affect OPN gene expression or secretion in any of the steroid treatments. Interestingly, OPN mRNA-positive GE cells lacked detectable PR expression, although PR were detected in the stroma. Results indicate that progesterone regulates OPN expression in GE through a complex mechanism that includes PR down-regulation, and we suggest the possible involvement of a progesterone-induced stromal cell-derived growth factor(s) that acts as a progestamedin.  相似文献   

13.
Interferon tau (IFNtau) is the antiluteolytic signal produced by the conceptus of ruminants. Intrauterine administration of recombinant ovine IFNtau suppresses expression of endometrial estrogen receptor (ER) and oxytocin receptor (OTR) in the luminal and superficial glandular epithelia to abrogate the production of luteolytic prostaglandin F(2alpha) (PGF(2alpha)) pulses. Subcutaneous (s.c.) injections of recombinant ovine (o) IFNtau appear to extend the interestrous interval by altering uterine PGF(2alpha) response to oxytocin. The present study tested the hypothesis that antiluteolytic effects of roIFNtau injected into the uterine lumen (paracrine) or s.c. (endocrine) are equivalent in suppressing expression of endometrial ER and OTR and inducing uterine expression of type I IFN-regulated Mx and ubiquitin cross-reactive proteins (UCRP). Sixteen cyclic ewes were fitted with uterine catheters on Day 5 (Day 0 = estrus), were assigned randomly to receive treatment with control proteins or roIFNtau (2 x 10(7) antiviral units/day) by either intrauterine or s.c. injections from Days 11 to 15, and were ovariohysterectomized on Day 16. Results indicated that expression of ER and OTR mRNAs in endometrial epithelium was suppressed by intrauterine but not by s.c. injections of roIFNtau. Intrauterine injections of roIFNtau increased expression of Mx and UCRP mRNA in the endometrium. Subcutaneous injections of roIFNtau increased endometrial Mx mRNA levels but not UCRP mRNA. Unexpectedly, intrauterine and s.c. injections of roIFNtau were equally effective in inducing expression of Mx and UCRP mRNA in the corpus luteum. Although s.c. injections of roIFNtau induced Mx mRNA in the endometrial epithelium, s.c. injections of roIFNtau did not abrogate activation of the uterine luteolytic mechanism by suppressing epithelial ER and OTR expression. Therefore, results of this study failed to support the assumption that endocrine roIFNtau mimics antiluteolytic effects of paracrine IFNtau to improve pregnancy rates in sheep.  相似文献   

14.
Osteopontin (OPN) is an acidic 70-kDa glycoprotein that is cleaved by proteases to yield 45-kDa and 24-kDa fragments. The 70-kDa and 45-kDa proteins contain a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence that binds to cell surface integrins (primarily alpha(v)beta(3) heterodimer) to promote cell-cell attachment and cell spreading. A 70-kDa acidic protein was previously detected by two-dimensional (2D) PAGE in Day 17 pregnant endometrial cytosolic extracts using Stainsall and identified as immunoreactive OPN using Western blotting. Three forms of immunoreactive OPN proteins (70, 45, and 24 kDa) were detected by 1D PAGE and Western blot analysis of endometrial extracts. OPN protein in endometrial extracts did not differ between cyclic and pregnant ewes. However, the amount of 45-kDa OPN increased in uterine flushings from pregnant ewes between Days 11 and 17. Immunoreactive OPN was localized to luminal and glandular epithelia of both cyclic and pregnant ewes, and to trophectoderm of Day 19 conceptuses. The alpha(v) and beta(3) integrins were detected on Day 19 endometrium and conceptuses by immunofluorescence. It was reported that OPN mRNA increases in the uterine glands of pregnant ewes and secretion of OPN protein into the uterine lumen increases during early pregnancy. The present results demonstrate accumulation of OPN protein on endometrial LE and conceptus trophectoderm. Therefore, it is hypothesized that progesterone and/or interferon-tau induce expression, secretion and/or proteolytic cleavage of OPN by uterine epithelium. Secreted OPN is then available as ligand for alpha(v)beta(3) integrin heterodimer on trophectoderm and uterus to 1) stimulate changes in morphology of conceptus trophectoderm and 2) induce adhesion between luminal epithelium and trophectoderm essential for implantation and placentation.  相似文献   

15.
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.  相似文献   

16.
Total glucose in ovine uterine lumenal fluid increases 6-fold between Days 10 and 15 of gestation, but not the estrous cycle; however, mechanisms for glucose transport into the uterine lumen and uptake by conceptuses (embryo/fetus and associated membranes) are not established. This study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on expression of both facilitative (SLC2A1, SLC2A3, and SLC2A4) and sodium-dependent (SLC5A1 and SLC5A11) glucose transporters in ovine uterine endometria from Days 10 to 16 of the estrous cycle and Days 10 to 20 of pregnancy, as well as in conceptuses from Days 10 to 20 of pregnancy. The SLC2A1 and SLC5A1 mRNAs and proteins were most abundant in uterine luminal epithelia and superficial glandular epithelia (LE/sGE), whereas SLC2A4 was present in stromal cells and glandular epithelia (GE). SLC5A11 mRNA was most abundant in endometrial GE, whereas SLC2A3 mRNA was not detectable in endometria. SLC2A1, SLC2A3, SLC2A4, SLC5A1, and SLC5A11 were expressed in the trophectoderm and endoderm of conceptuses. Steady-state levels of SLC2A1, SLC5A1, and SLC5A11 mRNAs, but not SLC2A4 mRNA, were greater in endometria from pregnant than from cyclic ewes. Progesterone increased SLC2A1, SLC5A11, and SLC2A4 mRNAs in the LE/sGE and SLC5A1 in the GE of ovariectomized ewes. Expression of SLC5A1 was inhibited by ZK136,317 (progesterone receptor antagonist), and the combination of ZK136,317 and IFNT further decreased expression in GE. In constrast, P4 induced and IFNT stimulated expression of SLC2A1 and SLC5A11, and these effects were blocked by ZK136,317. Results of this study indicate differential expression of facilitative and sodium-dependent glucose transporters in ovine uteri and conceptuses for transport and uptake of glucose, and that P4 or P4 and IFNT regulate their expression during the peri-implantation period of pregnancy.  相似文献   

17.
Interferon tau (IFNtau) is the pregnancy recognition signal produced by the conceptus trophectoderm and acts in a paracine manner on the ovine endometrium to increase expression of IFN-stimulated genes primarily in the stroma and deep glandular epithelium, including IFN regulatory factor-1 (IRF-1). The roles of Stat1, Stat2, and IRF-9 in IFNtau regulation of IRF-1 expression were determined using human stromal fibroblasts lacking specific IFN signaling components or complemented with specific Stat1 mutants. In parental (2fTGH) cells treated with IFNtau, Stat1alpha/beta was tyrosine phosphorylated by 15 min, and IRF-1 mRNA and protein increased from 0 to 6 h, was maximal at 6 h, and decreased to 24 h. In contrast, IFNtau did not affect IRF-1 expression in Stat1- and Stat2-deficient cells or in Stat1-deficient cells complemented with Stat1 Y701Q or Stat1 R602L mutants. In Stat1-deficient cells complemented with the Stat1 S727A mutant, Stat1alpha, or Stat1beta and treated with IFNtau, IRF-1 increased from 0 to 6 h, was maximal at 6 h, and decreased thereafter. In IRF-9-deficient cells stimulated with IFNtau, IRF-1 increased from 0 to 6 h but did not exhibit the sharp decline from 6 to 12 h observed in other cells. Collectively, results indicate that IFNtau effect on IRF-1 expression is primarily regulated by tyrosine-phosphorylated Stat1alpha or Stat1beta dimers, whereas the decline of IRF-1 after 6 h of IFNtau treatment is regulated by IRF-9.  相似文献   

18.
Analysis of osteopontin at the maternal-placental interface in pigs   总被引:11,自引:0,他引:11  
Noninvasive, epitheliochorial placentation in the pig follows a prolonged preimplantation period characterized by migration, spacing and elongation of conceptuses, and secretion of estrogen for maternal recognition of pregnancy. Osteopontin (OPN) is an extracellular matrix protein that binds integrins to promote cell-cell attachment and communication. OPN appears to play a key role in conceptus implantation and maintenance of pregnancy in sheep; however, a role for OPN in the porcine uterus has not been established. Therefore, this study examined OPN expression and function in the porcine uterus and conceptus (embryo/fetus and associated extraembryonic membranes). Northern and slot blot hybridization detected an increase in endometrial OPN expression between Days 25 and 30, and levels remained elevated through Day 85 of pregnancy. In situ hybridization localized OPN mRNA to discrete regions of the uterine luminal epithelium (LE) on Day 15 of pregnancy and to the entire LE thereafter. Glandular epithelial (GE) expression of OPN mRNA was first detected on Day 35 of pregnancy and increased through Day 85. Both 70- and 45-kDa forms of OPN protein were detected in cyclic and pregnant endometrium by Western blotting. OPN protein was localized to the LE and GE by immunofluorescence; however, only the 70-kDa OPN was detected in uterine flushings. OPN protein was present along the entire uterine-placental interface after Day 30 of pregnancy. In addition, OPN mRNA and protein were localized to immune-like cells within the stratum compactum of the endometrium in both Day 9 cyclic and pregnant gilts. Incubation of OPN-coated microbeads with porcine trophectoderm and uterine luminal epithelial cells induced Arg-Gly-Asp (RGD)-dependent integrin activation and transmembrane accumulation of cytoskeletal molecules at the apical cell surface as assessed by immunofluorescence detection of talin or alpha-actinin as markers for focal adhesions. These results suggest that OPN, expressed by uterine epithelium and immune cells, may interact with receptors (i.e., integrins) on conceptus and uterus to promote conceptus development and signaling between these tissues as key contributors to attachment and placentation in the pig.  相似文献   

19.
Fibroblast growth factor 7 (FGF7) stimulates cell proliferation, differentiation, migration and angiogenesis. The consensus is that FGF7, expressed by mesenchymal cells, binds FGF receptor 2IIIb (FGFR2) on epithelia, thereby mediating epithelial-mesenchymal interactions. The pig uterus is unique in that FGF7 is expressed by the luminal epithelium (LE) and FGFR2 is expressed by the LE, glandular epithelium (GE), and trophectoderm to effect proliferation and differentiated cell functions during conceptus development and implantation. FGF7 expression by the uterine LE of pigs increases between Days 9 and 12 of the estrus cycle and pregnancy, as circulating concentrations of progesterone increase, progesterone receptors (PGR) in the uterine epithelia decrease, and the conceptuses secrete estradiol-17beta (E(2)), for pregnancy recognition. Furthermore, E(2) increases the expression of FGF7 in pig uterine explants. The present study investigates the relationships between progesterone, E(2), and their receptors and the expression of FGF7 in the pig uterus in vivo. Pigs were ovariectomized on Day 4 of the estrus cycle and injected i.m. daily from Day 4 to Day 12 with either corn oil (CO), progesterone (P4), P4 and ZK317,316 (PZK), E(2), P4 and E(2) (PE), or P4 and ZK and E(2) (PZKE). All gilts (n = 5/treatment) were hysterectomized on Day 12. The results suggest that: 1) P4 is permissive to FGF7 expression by down-regulating PGR in LE; 2) P4 stimulates PGR-positive uterine stromal cells to release an unidentified progestamedin that induces FGF7 expression by LE; 3) E(2) and P4 can induce FGF7 when PGR are rendered nonfunctional by ZK; and 4) E(2) from conceptuses interacts via estrogen receptor alpha, but not estrogen receptor beta in LE to induce maximal expression of FGF7 in LE on Day 12 of pregnancy in pigs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号