首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Migratory birds appear to have relatively smaller brain size compared to sedentary species. It has been hypothesized that initial differences in brain size underlying behavioural flexibility drove the evolution of migratory behaviour; birds with relatively large brains evolved sedentary habits and those with relatively small brains evolved migratory behaviour (migratory precursor hypothesis). Alternative hypotheses suggest that changes in brain size might follow different behavioural strategies and that sedentary species might have evolved larger brains because of differences in selection pressures on brain size in migratory and nonmigratory species. Here we present the first evidence arguing against the migratory precursor hypothesis. We compared relative brain volume of three subspecies of the white-crowned sparrow: sedentary Zonotrichia leucophrys nuttalli and migratory Z. l. gambelii and Z. l. oriantha. Within the five subspecies of the white-crowned sparrow, only Z. l. nuttalli is strictly sedentary. The sedentary behaviour of Z. l. nuttalli is probably a derived trait, because Z. l. nuttalli appears to be the most recent subspecies and because all species ancestral to Zonotrichia as well as all older subspecies of Z. leucophrys are migratory. Compared to migratory Z. l. gambelii and Z. l. oriantha, we found that sedentary Z. l. nuttalli had a significantly larger relative brain volume, suggesting that the larger brain of Z. l. nuttalli evolved after a switch to sedentary behaviour. Thus, in this group, brain size does not appear to be a precursor to the evolution of migratory or sedentary behaviour but rather an evolutionary consequence of a change in migratory strategy.  相似文献   

2.
It has been hypothesized that individuals who have higher demands for spatially based behaviours should show increases in hippocampal attributes. Some avian species have been shown to use a spatially based representation of their environment during migration. Further, differences in hippocampal attributes have been shown between migratory and non-migratory subspecies as well as between individuals with and without migratory experience (juveniles versus adults). We tested whether migratory behaviour might also be associated with increased hippocampal neurogenesis, and whether potential differences track previously reported differences in hippocampal attributes between a migratory (Zonotrichia leucophrys gambelii) and non-migratory subspecies (Z. l. nuttalli) of white-crowned sparrows. We found that non-migratory adults had relatively fewer numbers of immature hippocampal neurons than adult migratory birds, while adult non-migrants had a lower density of new hippocampal neurons than adult and juvenile migratory birds and juvenile non-migratory birds. Our results suggest that neurogenesis decreases with age, as juveniles, regardless of migratory status, exhibit similar and higher levels of neurogenesis than non-migratory adults. However, our results also suggest that adult migrants may either seasonally increase or maintain neurogenesis levels comparable to those found in juveniles. Our results thus suggest that migratory behaviour in adults is associated with maintained or increased neurogenesis and the differential production of new neurons may be the mechanism underpinning changes in the hippocampal architecture between adult migratory and non-migratory birds.  相似文献   

3.
The evolution of migration in an animal population produces a suite of physiological, behavioural and cognitive adaptations. Migratory birds, in particular, require the ability to return annually to breeding and wintering sites after long journeys, and thus might be predicted to have evolved enhanced spatial memory. In a comparison of two sparrow subspecies that co-occur in winter, the migratory subspecies (dark-eyed junco, Junco hyemalis hyemalis) performed better than the nonmigratory subspecies (J. h. carolinensis) on a room-scale spatial memory test. The migratory juncos also had more densely packed hippocampal neurons than did nonmigrants. Among nonmigrants, we looked for hippocampal differences between birds that occupied two home ranges annually and those that remained on their breeding territory year-round, to determine whether migration, per se, is related to neuroanatomical differences. However, we were unable to reach any conclusions because of low statistical power. A denser hippocampus could be the basis for better spatial memory in migrant juncos. Further testing of spatial memory on a landscape scale is needed to strengthen this argument and to understand cognitive differences between migrants and nonmigrants. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

4.
Previous research has shown heightened recruitment of new neurons to the chickadee hippocampus in the fall. The present study was conducted to determine whether heightened fall recruitment is associated with the seasonal onset of food-storing by comparing neurogenesis in chickadees and a non-food-storing species, the house sparrow. Chickadees and house sparrows were captured in the wild in fall and spring and received multiple injections of the cell birth marker bromodeoxyuridine (BrdU). Birds were held in captivity and the level of hippocampal neuron recruitment was assessed after 6 weeks. Chickadees showed significantly more hippocampal neuronal recruitment than house sparrows. We found no seasonal differences in hippocampal neuronal recruitment in either species. In chickadees and in house sparrows, one-third of new cells labeled for BrdU also expressed the mature neuronal protein, NeuN. In a region adjacent to the hippocampus, the hyperpallium apicale, we observed no significant differences in neuronal recruitment between species or between seasons. Hippocampal volume and total neuron number both were greater in spring than in fall in chickadees, but no seasonal differences were observed in house sparrows. Enhanced neuronal recruitment in the hippocampus of food-storing chickadees suggests a degree of neurogenic specialization that may be associated with the spatial memory requirements of food-storing behavior.  相似文献   

5.
Ecological, environmental, and geographic factors all influence genetic structure. Species with broad distributions are ideal systems because they cover a range of ecological and environmental conditions allowing us to test which components predict genetic structure. This study presents a novel, broad geographic approach using molecular markers, morphology, and habitat modeling to investigate rangewide and local barriers causing contemporary genetic differentiation within the geographical range of three white‐crowned sparrow (Zonotrichia leucophrys) subspecies: Z. l. gambelii, Z. l. oriantha, and Z. l. pugetensis. Three types of genetic markers showed geographic distance between sampling sites, elevation, and ecosystem type are key factors contributing to population genetic structure. Microsatellite markers revealed white‐crowned sparrows do not group by subspecies, but instead indicated four groupings at a rangewide scale and two groupings based on coniferous and deciduous ecosystems at a local scale. Our analyses of morphological variation also revealed habitat differences; sparrows from deciduous ecosystems are larger than individuals from coniferous ecosystems based on principal component analyses. Habitat modeling showed isolation by distance was prevalent in describing genetic structure, but isolation by resistance also had a small but significant influence. Not only do these findings have implications concerning the accuracy of subspecies delineations, they also highlight the critical role of local factors such as habitat in shaping contemporary population genetic structure of species with high dispersal ability.  相似文献   

6.
It is well established that spatial memory is dependent on the hippocampus in both mammals and birds. As memory capacity can fluctuate on a temporal basis, it is important to understand the mechanisms mediating such changes. It is known that early memory‐dependent experiences in young animals result in hippocampal enlargement and in increased neurogenesis, including cell proliferation and neuron survival. It is less clear, however, whether temporal changes in spatial memory are also associated with changes in hippocampal anatomy and cell proliferation in fully grown and experienced adult animals. In a previous study, we experimentally demonstrated that socially subordinate mountain chickadees (Poecile gambeli) showed inferior spatial memory performance compared to their dominant group mates, in the absence of significant differences in baseline corticosterone levels. Here we investigated whether these differences in memory between dominant and subordinate birds were associated with changes in the hippocampus. Following memory tests, chickadees were injected with 5‐bromo‐2′‐deoxyuridine to label dividing cells and sacrificed 2 days after the injections. We found no significant differences in volume or the total number of neurons in the hippocampal formation between dominant and subordinate chickadees, but subordinate birds had significantly lower cell proliferation rates in the ventricular zone adjacent to both the hippocampus and mesopallium compared to the dominants. Individuals, which performed better on spatial memory tests tended to have higher levels of cell proliferation. These results suggest that social status can affect cell proliferation rates in the ventricular zone and support the hypothesis that neurogenesis might be involved in memory function in adult animals. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

7.
It is well established that spatial memory is dependent on the hippocampus in both mammals and birds. As memory capacity can fluctuate on a temporal basis, it is important to understand the mechanisms mediating such changes. It is known that early memory-dependent experiences in young animals result in hippocampal enlargement and in increased neurogenesis, including cell proliferation and neuron survival. It is less clear, however, whether temporal changes in spatial memory are also associated with changes in hippocampal anatomy and cell proliferation in fully grown and experienced adult animals. In a previous study, we experimentally demonstrated that socially subordinate mountain chickadees (Poecile gambeli) showed inferior spatial memory performance compared to their dominant group mates, in the absence of significant differences in baseline corticosterone levels. Here we investigated whether these differences in memory between dominant and subordinate birds were associated with changes in the hippocampus. Following memory tests, chickadees were injected with 5-bromo-2'-deoxyuridine to label dividing cells and sacrificed 2 days after the injections. We found no significant differences in volume or the total number of neurons in the hippocampal formation between dominant and subordinate chickadees, but subordinate birds had significantly lower cell proliferation rates in the ventricular zone adjacent to both the hippocampus and mesopallium compared to the dominants. Individuals, which performed better on spatial memory tests tended to have higher levels of cell proliferation. These results suggest that social status can affect cell proliferation rates in the ventricular zone and support the hypothesis that neurogenesis might be involved in memory function in adult animals.  相似文献   

8.
The avian hippocampal formation is known to participate in naturally occurring spatial behavior such as homing in pigeons and cache recovery in food storing passerines, but its participation in the often spectacular migrations of birds remains uncertain. As a first investigation into the possible role of hippocampal formation in migration, the effect of hippocampal formation lesions on the geomagnetic migratory orientation of Savannah sparrows was examined. When tested indoors, hippocampal formation-lesioned sparrows were able to orient in an appropriate migratory direction indicating no necessary role for hippocampal formation in geomagnetic migratory orientation. However, hippocampal formation-lesioned birds displayed significantly less migratory (nocturnal) activity, a result that inspires further study. Accepted: 25 August 1999  相似文献   

9.
Brown‐headed cowbirds (Molothrus ater) are one of few species in which females show more complex space use than males. Female cowbirds search for, revisit, and parasitize host nests and, in a previous study, outperformed males on an open field spatial search task. Previous research reported a female‐biased sex difference in the volume of the hippocampus, a region of the brain involved in spatial memory. Neurons produced by adult neurogenesis may be involved in the formation of new memories and replace older neurons that could cause interference in memory. We tested for sex and seasonal differences in hippocampal volume and neurogenesis of brood‐parasitic brown‐headed cowbirds and the closely related non‐brood‐parasitic red‐winged blackbird (Agelaius phoeniceus) to determine whether there were differences in the hippocampus that reflected space use in the wild. Females had a larger hippocampus than males in both species, but hippocampal neurogenesis, measured by doublecortin immunoreactivity (DCX+), was greater in female than in male cowbirds in the absence of any sex difference in blackbirds, supporting the hypothesis of hippocampal specialization in female cowbirds. Cowbirds of both sexes had a larger hippocampus with greater hippocampal DCX+ than blackbirds. Hippocampus volume remained stable between breeding conditions, but DCX+ was greater post‐breeding, indicating that old memories may be lost through hippocampal reorganization following breeding. Our results support, in part, the hypothesis that the hippocampus of cowbirds is specialized for brood parasitism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1275–1290, 2016  相似文献   

10.
Twice a year, normally diurnal songbirds engage in long-distance nocturnal migrations between their wintering and breeding grounds. If and how songbirds sleep during these periods of increased activity has remained a mystery. We used a combination of electrophysiological recording and neurobehavioral testing to characterize seasonal changes in sleep and cognition in captive white-crowned sparrows (Zonotrichia leucophrys gambelii) across nonmigratory and migratory seasons. Compared to sparrows in a nonmigratory state, migratory sparrows spent approximately two-thirds less time sleeping. Despite reducing sleep during migration, accuracy and responding on a repeated-acquisition task remained at a high level in sparrows in a migratory state. This resistance to sleep loss during the prolonged migratory season is in direct contrast to the decline in accuracy and responding observed following as little as one night of experimenter-induced sleep restriction in the same birds during the nonmigratory season. Our results suggest that despite being adversely affected by sleep loss during the nonmigratory season, songbirds exhibit an unprecedented capacity to reduce sleep during migration for long periods of time without associated deficits in cognitive function. Understanding the mechanisms that mediate migratory sleeplessness may provide insights into the etiology of changes in sleep and behavior in seasonal mood disorders, as well as into the functions of sleep itself.  相似文献   

11.
Twice a year, normally diurnal songbirds engage in long-distance nocturnal migrations between their wintering and breeding grounds. If and how songbirds sleep during these periods of increased activity has remained a mystery. We used a combination of electrophysiological recording and neurobehavioral testing to characterize seasonal changes in sleep and cognition in captive white-crowned sparrows (Zonotrichia leucophrys gambelii) across nonmigratory and migratory seasons. Compared to sparrows in a nonmigratory state, migratory sparrows spent approximately two-thirds less time sleeping. Despite reducing sleep during migration, accuracy and responding on a repeated-acquisition task remained at a high level in sparrows in a migratory state. This resistance to sleep loss during the prolonged migratory season is in direct contrast to the decline in accuracy and responding observed following as little as one night of experimenter-induced sleep restriction in the same birds during the nonmigratory season. Our results suggest that despite being adversely affected by sleep loss during the nonmigratory season, songbirds exhibit an unprecedented capacity to reduce sleep during migration for long periods of time without associated deficits in cognitive function. Understanding the mechanisms that mediate migratory sleeplessness may provide insights into the etiology of changes in sleep and behavior in seasonal mood disorders, as well as into the functions of sleep itself.  相似文献   

12.
The human hippocampus and spatial and episodic memory   总被引:24,自引:0,他引:24  
Burgess N  Maguire EA  O'Keefe J 《Neuron》2002,35(4):625-641
Finding one's way around an environment and remembering the events that occur within it are crucial cognitive abilities that have been linked to the hippocampus and medial temporal lobes. Our review of neuropsychological, behavioral, and neuroimaging studies of human hippocampal involvement in spatial memory concentrates on three important concepts in this field: spatial frameworks, dimensionality, and orientation and self-motion. We also compare variation in hippocampal structure and function across and within species. We discuss how its spatial role relates to its accepted role in episodic memory. Five related studies use virtual reality to examine these two types of memory in ecologically valid situations. While processing of spatial scenes involves the parahippocampus, the right hippocampus appears particularly involved in memory for locations within an environment, with the left hippocampus more involved in context-dependent episodic or autobiographical memory.  相似文献   

13.
The breeding season is very brief for arctic-breeding passerines, and any interruptions of parental care by aggressive interactions over territory may reduce reproductive success. We tested both the "testosterone insensitivity" and "corticosterone insensitivity" hypotheses in the arctic-breeding Gambel's white-crowned sparrow, Zonotrichia leucophrys gambelii. Additionally, we tested whether simulated territorial intrusions (STIs), known to stimulate increases in luteinizing hormone (LH) and testosterone (T) in mid-latitude breeding Z. l. pugetensis, would also be effective in either the early or late phases of the brief breeding season of Z. l. gambelii. Plasma levels of T and LH were high early in the breeding season and declined as egg laying began. Exposure of free-living males to 10 min of STI significantly increased LH but not T secretion. Nonetheless, the pituitary-gonadal axis is sensitive as jugular injection of gonadotrophin-releasing hormone increased plasma T at 10 min relative to saline-challenged controls. T implants failed to increase territorial aggression following STI during incubation. These data are consistent with the T insensitivity hypothesis and contrast sharply with the response of the southerly breeding subspecies, Z. l. pugetensis, in which the territorial response to T administration is retained throughout its relatively long breeding season. However, corticosterone implants during the incubation period decreased territorial aggression during STI. This responsiveness to corticosterone is not consistent with the corticosterone insensitivity hypothesis of stress modulation. Z. l. gambelii retain sensitivity to corticosterone levels that may occur naturally in response to environmental perturbations resulting in suppression of territorial behavior.  相似文献   

14.
Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, we compared relative brain, neocortex and hippocampus volume between migratory and sedentary bats at the species-level and using phylogenetically independent contrasts. We found that migratory bats had relatively smaller brains and neocortices than sedentary species. Our results support the energy trade-off hypothesis because bats do not exhibit the same degree of flexibility in diet selection as sedentary birds. Our results also suggest that bat brain size differences are subtler than those found in birds, perhaps owing to bats'' shorter migration distances. Conversely, we found no difference in relative hippocampus volume between migratory and sedentary species, underscoring our limited understanding of the role of the hippocampus in bats.  相似文献   

15.
Chronic stress and corresponding chronic elevations of glucocorticoid hormones have been widely assumed to have deleterious effects on brain anatomy and functions such as learning and memory. In particular, it has been suggested that chronic elevations of glucocorticoid hormones result in death of hippocampal neurons and in reduced rates of hippocampal neurogenesis. It is not clear, however, if any increase in glucocorticoid levels has negative effects on hippocampal anatomy as many animals regularly maintain moderately elevated levels of glucocrticoids over long periods of time under natural energetically demanding conditions. We used unbiased stereological methods to investigate whether mountain chickadees (Poecile gambeli) implanted for 49 days with continuous time-release corticosterone pellets, designed to approximately double the baseline corticosterone levels, differed from placebo-implanted chickadees in their hippocampal anatomy and cell proliferation rates. We found no significant differences between corticosterone and placebo-implanted birds in either telencephalon volume, volume of the hippocampal formation, or the total number of hippocampal neurons. Cell proliferation rates, measured as the total number of BrdU-labeled cells in the ventricular zone adjacent either to the hippocampus or to the mesopallium, were also not significantly different between corticosterone and placebo-implanted chickadees. Our results suggest that prolonged moderate elevation of corticosterone might not provide the suggested deleterious effects on hippocampal anatomy and neurogenesis in food-caching birds and, as we have shown previously, it actually enhances spatial memory.  相似文献   

16.
The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.  相似文献   

17.
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical.  相似文献   

18.
目的探讨戊四氮点燃癫痫对大鼠空间学习记忆的影响及可能的分子机制。方法戊四氮(pentylenetet-razol,PTZ)点燃建立慢性癫痫(chronic epileptic,CEP)模型,Morris水迷宫进行行为学检测,免疫组织化学方法观察大鼠海马CA1、CA3区突触素(synaptophysin,P38)和突触后致密物95(postsynaptic density 95,PSD-95)的表达,并用计算机图像分析系统对免疫反应结果进行处理。结果水迷宫试验检测癫痫组大鼠空间学习记忆能力受损;免疫组化结果表明其海马CA1、CA3区P38和PSD-95免疫反应产物较对照组明显减少(P<0.01,P<0.05)。结论戊四氮点燃癫痫大鼠伴有学习记忆功能减退,其海马神经元P38和PSD-95的表达减少可能参与了空间学习记忆受损。  相似文献   

19.
Circulating estrogens affect the neural circuits that underlie learning and memory in several vertebrates via an influence on the hippocampus. In the songbird hippocampus local estrogen synthesis due to the abundant expression of aromatase may modulate hippocampal function including spatial memory performance. Here, we examined the effect of estradiol, testosterone, and dihydrotestosterone on the structure and function of the songbird hippocampus. Adult male zebra finches were castrated, implanted with one of these steroids or a blank implant, and trained on a spatial memory task. The rate of acquisition and overall performance on this task was recorded by direct observation. The size and density of cells in the hippocampus and its volume were measured. Estradiol-treated birds learned the task more rapidly than any other group. Although testosterone- and blank-implanted birds did learn the task, we found no evidence of learning in dihydrotestosterone-implanted subjects. Cells in the rostral hippocampus were larger in estradiol- and testosterone-treated birds relative to other groups. A corresponding decrease in the density of cells was apparent in estradiol-implanted subjects relative to all other groups. These data suggest that estradiol may accelerate the acquisition of a spatial memory task and increase the size of neurons in the rostral hippocampus. Since testosterone-mediated changes in acquisition and cell size were similar to those of estradiol, but not dihydrotestosterone, we conclude that neural aromatization of testosterone to estrogen is responsible for effects on the structure and function of the songbird hippocampus.  相似文献   

20.
Morphine abuse in treating severe and chronic pain has become a worldwide problem. But, chronic morphine exposure can cause memory impairment with its mechanisms not fully elucidated by past research sstudies which all focused on the harmful effects of morphine. Autophagy is an important pathway for cells to maintain survival. Here we showed that repeated morphine injection into C57BL/6 mice at a dose of 15 mg/kg per day for 7 days activated autophagic flux mainly in the hippocampi, especially in neurons of hippocampal CA1 region and microglia, with spatial memory impairment confirmed by Morris water maze test. Autophagy inhibition by 3-methyladenine obviously aggravates this morphine-induced memory impairment, accompanied with increased cell deaths in stratum pyramidale of hippocampal CA1, CA3, and DG regions and the activation of microglia to induce inflammation in hippocampus, such as upregulated expression of TNF-α, IL-1β, IL-6, and iNOS, as well as NF-κB’ s activation, while morphine alone promoted microglial immunosuppression in hippocampus with autophagy activation which was also confirmed in primary microglia. Taken together, our data indicates that autophagy activating in hippocampal cells can alleviate the memory impairment caused by morphine, by decreasing neuronal deaths in hippocampus and suppressing inflammation in hippocampal microglia, implying that modulating the activation of autophagy might be a promising method to prevent or treat the memory impairment caused by morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号