首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steroid hormone aldosterone regulates reabsorptive Na+ transport across specific high resistance epithelia. The increase in Na+ transport induced by aldosterone is dependent on protein synthesis and is due, in part, to an increase in Na+ conductance of the apical membrane mediated by amiloride-sensitive Na+ channels. To examine whether an increment in the biochemical pool of Na+ channels expressed at the apical cell surface is a mechanism by which aldosterone increases apical membrane Na+ conductance, apical cell-surface proteins from the epithelial cell line A6 were specifically labeled by an enzyme-catalyzed radioiodination procedure following exposure of cells to aldosterone. Labeled Na+ channels were immunoprecipitated to quantify the biochemical pool of Na+ channels at the apical cell surface. The activation of Na+ transport across A6 cells by aldosterone was not accompanied by alterations in the biochemical pool of Na+ channels at the apical plasma membrane, despite a 3.7-4.2-fold increase in transepithelial Na+ transport. Similarly, no change in the distribution of immunoreactive protein was resolved by immunofluorescence microscopy. The oligomeric subunit composition of the channel remained unaltered, with one exception. A 75,000-Da polypeptide and a broad 70,000-Da polypeptide were observed in controls. Following addition of aldosterone, the 75,000-Da polypeptide was not resolved, and the 70,000-Da polypeptide was the major polypeptide found in this molecular mass region. Aldosterone did not alter rates of Na+ channel biosynthesis. These data suggest that neither changes in rates of Na+ channel biosynthesis nor changes in its apical cell-surface expression are required for activation of transepithelial Na+ transport by aldosterone. Post-translational modification of the Na+ channel, possibly the 75,000 or 70,000-Da polypeptide, may be one of the cellular events required for Na+ channel activation by aldosterone.  相似文献   

2.
M Geheb  R Alvis  A Owen  E Hercker    M Cox 《The Biochemical journal》1984,218(1):221-228
We have identified a group of proteins (Mr approximately 70 000-80 000; pI approximately 5.5-6.0) in giant-toad (Bufo marinus) urinary bladders whose synthesis appears to be related to aldosterone-stimulated Na+ transport. Spironolactone, a specific mineralocorticoid antagonist in renal epithelia, inhibits the synthesis of these proteins as well as the natriferic effect of the hormone. Since a variety of other steroids (some of which are traditionally considered to be glucocorticoids) also stimulate Na+ transport in toad urinary bladders, we examined whether their natriferic activity was expressed in a fashion similar to that of aldosterone. Short-circuit current was used to measure Na+ transport, and epithelial-cell protein synthesis was detected with high-resolution two-dimensional polyacrylamide-gel electrophoresis and autoradiography. At a concentration of approximately 100 nM, dexamethasone, corticosterone and aldosterone were equinatriferic. Dexamethasone and aldosterone had identical dose-response curves, maximal and half-maximal activity being evident at concentrations of approximately 100 nM and 10 nM respectively. In contrast, at a concentration of approximately 10 nM, corticosterone had no effect on Na+ transport. The natriferic activities of these three steroids correlate with their known affinities for the putative mineralocorticoid receptor in toad urinary bladders. Natriferic concentrations of dexamethasone and corticosterone (140 nM) induced the synthesis of proteins with characteristics identical with those induced by aldosterone. Spironolactone, at an antagonist/agonist ratio of 2000:1, inhibited steroid-induced Na+ transport and the synthesis of these proteins. Thus it appears that all natriferic steroids share a common mechanism of action in toad urinary bladders. Natriferic activity can be correlated not only with relative steroid-receptor affinity but also with the induction of a specific group of epithelial-cell proteins.  相似文献   

3.
Epithelial Na channel activity was expressed in oocytes from Xenopus laevis after injection of mRNA from A6 cells, derived from Xenopus kidney. Poly A(+) RNA was extracted from confluent cell monolayers grown on either plastic or permeable supports. 1-50 ng RNA was injected into stage 5-6 oocytes. Na channel activity was assayed as amiloride- sensitive current (INa) under voltage-clamp conditions 1-3 d after injection. INa was not detectable in noninjected or water-injected oocytes. This amiloride-sensitive pathway induced by the mRNA had a number of characteristics in common with that in epithelial cells, including (a) high selectivity for Na over K, (b) high sensitivity to amiloride with an apparent K1 of approximately 100 nM, (c) saturation with respect to external Na with an apparent Km of approximately 10 mM, and (d) a time-dependent activation of current with hyperpolarization of the oocyte membrane. Expression of channel activity was temperature dependent, being slow at 19 degrees C but much more rapid at 25 degrees C. Fractionation of mRNA on a sucrose density gradient revealed that the species of RNA inducing channel activity had a sedimentation coefficient of approximately 17 S. Treatment of filter-grown cells with 300 nM aldosterone for 24 h increased Na transport in the A6 cells by up to fivefold but did not increase the ability of mRNA isolated from those cells to induce channel activity in oocytes. The apparent abundance of mRNA coding for channel activity was 10-fold less in cells grown on plastic than in those grown on filters, but was increased two- to threefold by aldosterone.  相似文献   

4.
Channels in epithelial cell membranes and junctions.   总被引:3,自引:0,他引:3  
Epithelia may be classified as "tight" or "leaky," depending on whether there is a significant pathway for transepithelial ion permeation via the junctions and bypassing the cells. The resistance of this paracellular channel may depend partly on structures visible in the electron microscope, partly on wall charge. Permeability determinations in the leaky junctions of gallbladder epithelium, using many different organic cations, suggest that the critical barriers barriers to ion permeation are 5--8 A in radius and bind cations by up to four strongly proton-accepting oxygens. The apical cell membrane of tight epithelia contains a Na+-selective channel that is blocked by amiloride and Ca2+, subject to negative feedback control by the Na+ pump in the basolateral membrane, and somehow promoted by aldosterone. To determine the permeabilities of these two channels (the junctional channel of leaky epithelia, and the Na+ channel of tight epithelia) to water and nonelectrolytes remains a major unsolved problem.  相似文献   

5.
Xenopus laevis A6 cells were used as model epithelia to test the hypothesis that K-Ras2A is an aldosterone-induced protein necessary for steroid-regulated Na(+) transport. The possibility that increased K-Ras2A alone is sufficient to mimic aldosterone action on Na(+) transport also was tested. Aldosterone treatment increased K-Ras2A protein expression 2.8-fold within 4 h. Active Ras is membrane associated. After aldosterone treatment, 75% of K-Ras was localized to the plasma membrane compared with 25% in the absence of steroid. Aldosterone also increased the amount of active (phosphorylated) mitogen-activated protein kinase kinase likely through K-Ras2A signaling. Steroid-induced K-Ras2A protein levels and Na(+) transport were decreased with antisense K-ras2A oligonucleotides, showing that K-Ras2A is necessary for the natriferic actions of aldosterone. Aldosterone-induced Na(+) channel activity, was decreased from 0.40 to 0.09 by pretreatment with antisense ras oligonucleotide, implicating the luminal Na(+) channel as one final effector of Ras signaling. Overexpression of K-Ras2A increased Na(+) transport approximately 2.2-fold in the absence of aldosterone. These results suggest that aldosterone signals to the luminal Na(+) channel via multiple pathways and that K-Ras2A levels are limiting for a portion of the aldosterone-sensitive Na(+) transport.  相似文献   

6.
Aldosterone-stimulated Na+ transport is mediated by new protein synthesis, but the identification of specific aldosterone-induced proteins (AIPs) has proven difficult and the cellular function of such proteins is unknown. Using high resolution two-dimensional polyacrylamide gel electrophoresis and autoradiography we have identified AIPs of similar isoelectric points (5.8 to 6.4) and molecular weights (70,000 to 80,000) in membrane-rich and cytosolic subcellular fractions of epithelial cells derived from single toad urinary bladders. The ability of actinomycin D to inhibit both AIP synthesis and aldosterone-induced Na+ transport is consistent with a role for these proteins in the natriferic action of aldosterone. In addition, since non-natriferic concentrations of cortisol did not induce similar proteins, AIP synthesis appears to be mineralocorticoid-specific. The relationship of AIP synthesis to Na+ transport was also studied. Since amiloride, which blocks Na+ transport in high resistance epithelia, did not affect the synthesis of these proteins, Na+ transport is not required for their synthesis. In addition, similar proteins were not induced when Na+ transport was stimulated by antidiuretic hormone and theophylline. Consequently, AIP synthesis is not merely a nonspecific consequence of the cellular metabolic changes associated with Na+ transport.  相似文献   

7.
N Dascal  I Lotan 《Neuron》1991,6(1):165-175
Phorbol esters and purified protein kinase C (PKC) have been shown to down-modulate the voltage-dependent Na+ channels expressed in Xenopus oocytes injected with chick brain RNA. We used the two-electrode voltage-clamp technique to demonstrate that a Na+ channel expressed in oocytes injected with RNA coding for the alpha subunit of the channel alone (VA200, a variant of rat brain type IIA) is also inhibited by PKC activation. The inhibition of Na+ currents, expressed in oocytes injected with either alpha subunit RNA (rat) or total brain RNA (chick), is voltage-dependent, being stronger at negative potentials. It appears to result mainly from a shift in the activation curve to the right and possibly a decrease in the steepness of the voltage dependence of activation. There is little effect on the inactivation process and maximal Na+ conductance. Thus, PKC modulates the Na+ channel by a mechanism involving changes in voltage-dependent properties of its main, channel-forming alpha subunit.  相似文献   

8.
9.
B Rudy  J H Hoger  H A Lester  N Davidson 《Neuron》1988,1(8):649-658
Fast transient K+ channels (A channels) of the type operating in the subthreshold region for Na+ action potential generation were expressed in Xenopus oocytes injected with rat brain poly(A) RNA. Sucrose gradient fractionation of the RNA separates mRNAs encoding A-currents (6-7 kb) from mRNAs encoding other voltage-dependent K+ channels. A-currents expressed with fractionated mRNA differ in kinetics and pharmacology from A-currents expressed with total mRNA. The original properties of the A-currents can be reconstituted when small mRNAs (2-4 kb) are added to the large mRNA fraction. Thus the properties of the A-currents expressed with total poly(A) RNA depend on the presence of more than one mRNA species. mRNA(s) present in the large RNA fraction must encode channel subunits since they express an A-current by themselves. The small mRNA(s) may encode a second subunit(s) or a factor, such as an enzymatic activity that modulates the properties of the channels, which could play a role in generating A-channel functional diversity.  相似文献   

10.
Aldosterone increases citrate synthase activity in toad urinary bladder and mammalian kidney. It has been suggested that this action is important to aldosterone stimulation of Na+ transport, and it has been used as a marker of those epithelia which are stimulated by aldosterone. We describe three continuous lines of cultured cells derived from toad urinary bladder and toad kidney in which aldosterone increases active Na+ transport but does not increase the activity of citrate synthase. Therefore, in cultured cells at least, citrate synthase is not a critical enzyme for, or a suitable marker of, aldosterone stimulation of Na+ transport.  相似文献   

11.
12.
The Xenopus laevis distal tubule epithelial cell line A6 was used as a model epithelia to study the role of isoprenylcysteine-O-carboxyl methyltransferase (pcMTase) in aldosterone-mediated stimulation of Na(+) transport. Polyclonal antibodies raised against X. laevis pcMTase were immunoreactive with a 33-kDa protein in whole cell lysate. These antibodies were also reactive with a 33-kDa product from in vitro translation of the pcMTase cDNA. Aldosterone application increased pcMTase activity resulting in elevation of total protein methyl esterification in vivo, but pcMTase protein levels were not affected by steroid, suggesting that aldosterone increased activity independent of enzyme number. Inhibition of pcMTase resulted in a reduction of aldosterone-induced Na(+) transport demonstrating the necessity of pcMTase-mediated transmethylation for steroid induced Na(+) reabsorption. Transfection with an eukaryotic expression construct containing pcMTase cDNA increased pcMTase protein level and activity. This resulted in potentiation of the natriferic actions of aldosterone. However, overexpression did not change Na(+) reabsorption in the absence of steroid, suggesting that pcMTase activity is not limiting Na(+) transport in the absence of steroid, but that subsequent to aldosterone addition, pcMTase activity becomes limiting. These results suggest that a critical transmethylation is necessary for aldosterone-induction of Na(+) transport. It is likely that the protein catalyzing this methylation is isoprenylcysteine-O-carboxyl methyltransferase and that aldosterone activates pcMTase without affecting transferase expression.  相似文献   

13.
We have identified a group of proteins (Mr approximately 70000-80000; pI approximately 5.8-6.4) in giant-toad (Bufo marinus) urinary-bladder epithelial cells whose synthesis appears to be related to aldosterone-stimulated Na+ transport. To define this relationship further, we examined whether submaximal natriferic concentrations of aldosterone induced these proteins and whether spironolactone (a specific mineralocorticoid antagonist in renal epithelia) inhibited their synthesis. Short-circuit current was used to measure Na+ transport and epithelial-cell protein synthesis was detected with high-resolution two-dimensional polyacrylamide-gel electrophoresis and autoradiography. Submaximal natriferic concentrations of aldosterone (1.4 X 10(-8) M) induced the same proteins as maximal concentrations of the hormone (1.4 X 10(-7) M). In contrast, in previous experiments, similar proteins were not induced by subnatriferic concentrations (5.0 X 10(-8) M) of cortisol, a glucocorticoid. A spironolactone/aldosterone molar ratio of 2000:1 was required to inhibit aldosterone-stimulated Na+ transport completely; ratios of 200:1 and 500:1 produced partial inhibition. Concentrations of spironolactone that abolished aldosterone-stimulated Na+ transport also inhibited aldosterone-induced protein synthesis. We conclude that the synthesis of the proteins we have identified is specifically related to activation of the mineralocorticoid pathway.  相似文献   

14.
Activities of Na channels and Na pumps were studied in the rat cortical collecting tubule (CCT) during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet, diuretics, or administration of exogenous aldosterone. Tubules were isolated and split open to expose the luminal membrane surface. Using the whole-cell patch-clamp technique, activities of the apical Na channels and the basolateral Na pumps were measured in principal cells as the currents inhibited by amiloride (10 microM) and ouabain (1 mM), respectively. Na channel current (INa) was not measurable in CCTs from control animals on a normal diet. INa was approximately 200 pA/cell in CCTs from animals on a low-Na diet or infused with aldosterone using osmotic minipumps. Currents attributable to the Na pump (Ipump) were similar in control animals and animals on a low-Na diet. Maximal currents were approximately 35 pA/cell in both groups, and decreased with hyperpolarization of the cell membrane. In contrast, administration of exogenous aldosterone increased Ipump fourfold. Coinfusion of aldosterone and amiloride in vivo through the minipumps did not affect the induction of INa but reduced the induction of Ipump by 80%. We conclude that the induction of channel activity in this tissue is a direct action of aldosterone, whereas the induction of pump activity may be a consequence of the increased Na traffic through the epithelial cells.  相似文献   

15.
Summary Activators of protein kinase C (PKC) stimulate Na transport (J Na) across frog skin. We have examined the effect of Ca2+ on PKC stimulation ofJ Na. Both the phorbol ester 12-O-tetradecanoylglycerol (DiC8) were used as PKC activators. Blocking Ca2+ entry into the cytosol (either from external or internal stores) reduced the subsequent natriferic effect of the PKC activators. This negative interaction did not simply reflect saturation of activation of the apical Na+ channels, since the stimulations produced by blocking Ca2+ entry and adding cyclic AMP were simply additive.The Ca2+ dependence of the natriferic effect could have reflected either a direct action of cytosolic Ca2+ on PKC or an indirect action on the final receptor site (the Na+ channel). To distinguish between these possibilities, the TPA- and phospholipid-dependent kinase activity of broken-cell preparations was assayed. The kinase activity was not stimulated by physiological levels of Ca2+, and in fact was inhibited at millimolar concentrations of Ca2+.We conclude that the effects of Ca2+ on the natriferic response to PKC activators are indirect. Reducing cytosolic uptake of Ca2+ may have stimulated Na+ transport by a chemical modification of the apical channels observed in other tight epithelia. The usual stimulation of Na+ transport produced by PKC activators in frog skin may reflect the operation of a nonconventional form of PKC. This enzyme is Ca2+ independent and seems related to thenPKC or PKC observed in other systems.  相似文献   

16.
Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ absorption across many epithelia. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. Two members of the Ras superfamily of small GTPases, K-Ras and RhoA, activate ENaC. K-Ras activates ENaC via a signaling pathway involving phosphatidylinositol 3-kinase and production of phosphatidylinositol 3,4,5-trisphosphate with the phospholipid directly interacting with the channel to increase open probability. How RhoA increases ENaC activity is less clear. Here we report that RhoA and K-Ras activate ENaC through independent signaling pathways and final mechanisms of action. Activation of RhoA signaling rapidly increases the membrane levels of ENaC likely by promoting channel insertion. This process dramatically increases functional ENaC current, resulting in tight spatial-temporal control of these channels. RhoA signals to ENaC via a transduction pathway, including the downstream effectors Rho kinase and phosphatidylinositol-4-phosphate 5-kinase. Phosphatidylinositol 4,5-biphosphate produced by activated phosphatidylinositol 4-phosphate 5-kinase may play a role in targeting vesicles containing ENaC to the plasma membrane.  相似文献   

17.
The early phase of the stimulatory effect of aldosterone on sodium reabsorption in renal epithelia is thought to involve activation of apical sodium channels. However, the genes initiating this effect are unknown. We used a combination of polymerase chain reaction-based subtractive hybridization and differential display techniques to identify aldosterone-regulated immediate early genes in renal mineralocorticoid target cells. We report here that aldosterone rapidly increases mRNA levels of a putative Ser/Thr kinase, sgk (or serum- and glucocorticoid-regulated kinase), in its native target cells, i.e. in cortical collecting duct cells. The effect occurs within 30 min of the addition of aldosterone, is mediated through mineralocorticoid receptors, and does not require de novo protein synthesis. The full-length sequences of rabbit and mouse sgk cDNAs were determined. Both cDNAs show significant homology to rat and human sgk (88-94% at the nucleotide level, and 96-99% at the amino acid level). Coexpression of the mouse sgk in Xenopus oocytes with the three subunits of the epithelial Na+ channel results in a significantly enhanced Na+ current. These results suggest that sgk is an immediate early aldosterone-induced gene, and this protein kinase plays an important role in the early phase of aldosterone-stimulated Na+ transport.  相似文献   

18.
In amphibian epithelia and in cortical collecting duct the antidiuretic peptide arginine-vasopressin (AVP) stimulates activity of epithelial Na+ channels (ENaCs). Generally, the AVP action upon Na+ (re)absorption is believed to be a cAMP/protein-kinase-A mediated mechanism. In the Xenopus oocyte expression system, however, a clear stimulation of ENaC activity by cAMP could not be reproduced with channel subunits cloned from A6 cells or rat colon. We have recently shown that membrane-permeant 8-(4-chlorophenylthio)-cAMP (cpt-cAMP) stimulates activity of a hybrid ENaC in Xenopus oocytes, that consists of an alpha-subunit cloned from guinea-pig colon and the beta- and gamma-subunit originating from rat colon (gpalpharbetagammaENaC). In the present study, we have further investigated the mechanisms by which cpt-cAMP upregulates gpalpharbetagammaENaC activity. Interestingly, we found AVP to stimulate the gpalpharbetagammaENaC in oocytes. Also, treatment with GTP-gamma-S largely activated this channel. In contrast, as a conflicting result, forskolin had no stimulatory effect on the cAMP-sensitive gpalpharbetagammaENaC. Experiments with Brefeldin A (BFA) or nocodazole suggested that only a minor part of cpt-cAMP-induced activation is probably due to an additional translocation of channel proteins into the oocyte membrane. In conclusion, the stimulatory effect of synthetic cpt-cAMP does not seem to be exclusively provided by classical cAMP/PKA-associated transduction mechanisms, i.e., as in A6 cells.  相似文献   

19.
Summary Urinary bladders ofBufo marinus were depolarized, by raising the serosal K concentration, to facilitate voltage-clamping of the apical membrane. Passive Na transport across the apical membrane was then studied with near-instantaneous current-voltage curves obtained before and after eliciting a natriferic response with oxytocin. Fitting with the constant-field equation showed that the natriferic effect is accounted for by an increase in the apical Na permeability. It is accompanied by a small increase in cellular Na activity. Furthermore, fluctuation analysis of the amiloride-induced shot-noise component of the short-circuit current indicated that the permeability increase is not due to increased Na translocation through those Na channels which were already conducting prior to hormonal stimulation. Rather, the natriferic effects is found to be based on an increase in the population of transporting channels. It appears that, in response to the hormone, Na channels are rapidly recruited from a pool of electrically silent channels.  相似文献   

20.
Protons activate the delta-subunit of the epithelial Na+ channel in humans   总被引:3,自引:0,他引:3  
The amiloride-sensitive epithelial Na(+) channel (ENaC) controls Na(+) transport into cells and across epithelia. So far, four homologous subunits of mammalian ENaC have been isolated and are denoted as alpha, beta, gamma, and delta. ENaCdelta can associate with beta and gamma subunits and generate a constitutive current that is 2 orders of magnitude larger than that of homomeric ENaCdelta. However, the distribution pattern of ENaCdelta is not consistent with that of the beta and gamma subunits. ENaCdelta is expressed mainly in the brain in contrast to beta and gamma subunits, which are expressed in non-neuronal tissues. To explain this discrepancy, we searched for novel functional properties of homomeric ENaCdelta and investigated the detailed tissue distribution in humans. When human ENaCdelta was expressed in Xenopus oocytes and Chinese hamster ovary cells, a reduction of extracellular pH activated this channel (half-maximal pH for an activation of 5.0), and the acid-induced current was abolished by amiloride. The most striking finding was that the desensitization of the acid-evoked current was much slower (by approximately 10% 120 s later), dissociating from the kinetics of acid-sensing ion channels in the degenerin/epithelial Na(+) channel family, which were rapidly desensitized during acidification. RNA dot-blot analyses showed that ENaCdelta mRNA was widely distributed throughout the brain and was also expressed in the heart, kidney, and pancreas in humans. Northern blotting confirmed that ENaCdelta was expressed in the cerebellum and the hippocampus. In conclusion, human ENaCdelta activity is regulated by protons, indicating that it may contribute to the pH sensation and/or pH regulation in the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号