首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Alignment of RNA secondary structures is important in studying functional RNA motifs. In recent years, much progress has been made in RNA motif finding and structure alignment. However, existing tools either require a large number of prealigned structures or suffer from high time complexities. This makes it difficult for the tools to process RNAs whose prealigned structures are unavailable or process very large RNA structure databases.  相似文献   

2.

Background  

The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way.  相似文献   

3.

Background  

The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures.  相似文献   

4.
5.

Background  

In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs) fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings.  相似文献   

6.

Background  

The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10–100 μg of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches for RNA amplificationin vitrohave been described and applied for microarray studies. In most of these, systematic analyses of the potential bias introduced by the enzymatic modifications are lacking.  相似文献   

7.
8.

Background  

Microarray technology has become a very important tool for studying gene expression profiles under various conditions. Biologists often pool RNA samples extracted from different subjects onto a single microarray chip to help defray the cost of microarray experiments as well as to correct for the technical difficulty in getting sufficient RNA from a single subject. However, the statistical, technical and financial implications of pooling have not been explicitly investigated.  相似文献   

9.
10.

Background  

To understand mycobacterial pathogenesis analysis of gene expression by quantification of RNA levels becomes increasingly important. However, current preparation methods yield mycobacterial RNA that is contaminated with chromosomal DNA.  相似文献   

11.
12.

Background  

RNA polymerase III (pol III) type 3 promoters such as U6 or 7SK are commonly used to express short-hairpin RNA (shRNA) effectors for RNA interference (RNAi). To extend the use of RNAi for studies of development using the chicken as a model system, we have developed a system for expressing shRNAs using the chicken 7SK (ch7SK) promoter.  相似文献   

13.

Background  

Japanese encephalitis virus (JEV) NS5 is a viral nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase (RdRp) domains. It is a key component of the viral RNA replicase complex that presumably includes other viral nonstructural and cellular proteins. The biochemical properties of JEV NS5 have not been characterized due to the lack of a robust in vitro RdRp assay system, and the molecular mechanisms for the initiation of RNA synthesis by JEV NS5 remain to be elucidated.  相似文献   

14.

Background  

With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression.  相似文献   

15.

Background  

DICER is an RNase III family endoribonuclease that processes precursor microRNAs (pre-miRNAs) and long double-stranded RNAs, generating microRNA (miRNA) duplexes and short interfering RNA duplexes with 20~23 nucleotides (nts) in length. The typical form of pre-miRNA processed by the Drosha protein is a hairpin RNA with 2-nt 3' overhangs. On the other hand, production of mature miRNA from an endogenous hairpin RNA with 5' overhangs has also been reported, although the mechanism for this process is unknown.  相似文献   

16.
17.

Background  

Difficult problems in structural bioinformatics are often studied in simple exact models to gain insights and to derive general principles. Protein folding, for example, has long been studied in the lattice model. Recently, researchers have also begun to apply the lattice model to the study of RNA folding.  相似文献   

18.
19.

Background  

Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization.  相似文献   

20.

Background  

RNA editing is the process whereby an RNA sequence is modified from the sequence of the corresponding DNA template. In the mitochondria of land plants, some cytidines are converted to uridines before translation. Despite substantial study, the molecular biological mechanism by which C-to-U RNA editing proceeds remains relatively obscure, although several experimental studies have implicated a role for cis-recognition. A highly non-random distribution of nucleotides is observed in the immediate vicinity of edited sites (within 20 nucleotides 5' and 3'), but no precise consensus motif has been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号