首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Site-directed mutagenesis, electron microscopy, and X-ray crystallography were used to probe the structural basis of annexin IV-induced membrane aggregation and the inhibition of this property by protein kinase C phosphorylation. Site-directed mutants that either mimic (Thr6Asp, T6D) or prevent (Thr6Ala, T6A) phosphorylation of threonine 6 were produced for these studies and compared with wild-type annexin IV. In vitro assays showed that unmodified wild-type annexin IV and the T6A mutant, but not PKC-phosphorylated wild-type or the T6D mutant, promote vesicle aggregation. Electron crystallographic data of wild-type and T6D annexin IV revealed that, similar to annexin V, the annexin IV proteins form 2D trimer-based ordered arrays on phospholipid monolayers. Cryo-electron microscopic images of junctions formed between lipid vesicles in the presence of wild-type annexin IV indicated a separation distance corresponding to the thickness of two layers of membrane-bound annexin IV. In this orientation, a single layer of WT annexin IV, attached to the outer leaflet of one vesicle, would undergo face-to-face self-association with the annexin layer of a second vesicle. The 2.0-A resolution crystal structure of the T6D mutant showed that the mutation causes release of the N-terminal tail from the protein core. This change would preclude the face-to-face annexin self-association required to aggregate vesicles. The data suggest that reversible complex formation through phosphorylation and dephosphorylation could occur in vivo and play a role in the regulation of vesicle trafficking following changes in physiological states.  相似文献   

2.
Annexin A5 is a member of a family of homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca(2+)-dependent manner. Annexin A5, as well as other annexins, self-assembles into two-dimensional (2D) ordered arrays upon binding to membranes, a property that has been proposed to have functional implications. Electron microscopy and atomic force microscopy experiments have revealed that annexin A5 forms two types of 2D crystals-with either p6 or p3 symmetry-that are both based on annexin trimers. In this study, we describe three other crystal forms that coexist with the p6 crystals. All crystal forms are made of the same building blocks, namely, dimers of trimers and trimers of trimers. A mechanistic model of the formation of the annexin A5 2D crystals is proposed.  相似文献   

3.
Structure of soluble and membrane-bound human annexin V.   总被引:5,自引:0,他引:5  
Annexins are a family of water-soluble proteins that bind to membranes in a calcium-dependent manner. Some members have been shown to exhibit voltage-dependent calcium channel activity, a property characteristic of integral membrane proteins. The structures of human annexin V in crystals obtained from aqueous solution and in two-dimensional crystals when bound to phospholipid layers have been determined by X-ray and electron crystallography, respectively. They are compared here. Both structures show close correspondence, suggesting that annexins attach to phospholipid membranes without substantial structural change. These observations, together with biochemical data, lead to the conclusion that annexin V interacts with phospholipid membranes with its convex face. We propose that binding is mediated by direct interaction between the phosphoryl headgroups and the calcium bound to polypeptide loops protruding from the convex face. The membrane area covered by annexin may thus become disordered and permeable allowing calcium flux through the membrane and the central channel-like structure found in annexin molecules.  相似文献   

4.
cDNA coding for N-terminally truncated human annexin I, a member of the family of Ca(2+)-dependent phospholipid binding proteins, has been cloned and expressed in Escherichia coli. The expressed protein is biologically active, and has been purified and crystallized in space group P2(1)2(1)2(1) with cell dimensions a = 139.36 A, b = 67.50 A, and c = 42.11 A. The crystal structure has been determined by molecular replacement at 3.0 A resolution using the annexin V core structure as the search model. The average backbone deviation between these two structures is 2.34 A. The structure has been refined to an R-factor of 17.7% at 2.5 A resolution. Six calcium sites have been identified in the annexin I structure. Each is located in the loop region of the helix-loop-helix motif. Two of the six calcium sites in annexin I are not occupied in the annexin V structure. The superpositions of the corresponding loop regions in the four domains show that the calcium binding loops in annexin I can be divided into two classes: type II and type III. Both classes are different from the well-known EF-hand motif (type I).  相似文献   

5.
Annexins constitute a family of phospholipid- and Ca(2+)-binding proteins involved in a variety of membrane-related processes. The property of several annexins, including annexin A5, to self-organize at the surface of lipid membranes into 2D ordered arrays has been proposed to be functionally relevant in cellular contexts. To further address this question, we investigated the high-resolution structure of annexin A5 trimers in membrane-bound 2D crystals by cryo-electron microscopy (Cryo-EM). A new 2D crystal form was discovered, with p32(1) symmetry, which is significantly better ordered than the 2D crystals reported before. A 2D projection map was obtained at 6.5 A resolution, revealing protein densities within each of the four domains characteristic of annexins. A quantitative comparison was performed between this structure and models generated from the structure of the soluble form of annexin A5 in pseudo-R3 3D crystals. This analysis indicated that both structures are essentially identical, except for small local changes attributed to membrane binding. As a consequence, and contrary to the common view, annexin A5 molecules maintain their bent shape and do not flatten upon membrane binding, which implies either that the four putative Ca(2+) and membrane-binding loops present different types of interaction with the membrane surface, or that the membrane surface is locally perturbed. We propose that the trimerization of annexin A5 molecules is the relevant structural change occurring upon membrane binding. The evidence that 2D arrays of annexin A5 trimers are responsible for its in vitro property of blood coagulation inhibition supports this conclusion.  相似文献   

6.
首次从大戟科植物珠子草中分离得到软木三萜酮.利用晶体X-射线法与一维和二维核磁共振法测定了该化合物的结构,指认了核磁共振信号的归属.晶体衍射结果表明,化合物是以斜方晶体空间群形成晶体,晶体数据维P2(1)2(1)2(1)with a=6.361(2)A,b=13.933(3)A,c=28.440(6)A,α=90°,β=90°,γ=90°,V=2520.6(11)A3,Z=4.在晶体中存在一个微弱的分子间的作用力C-H……O=C,此作用力被认为是晶体形成的重要因素.NMR方法确定化合物的结构相同,表明了软木三萜酮在晶体和溶液具有相同的构型.  相似文献   

7.
Two-dimensional crystalline arrays of annexin IV were generated by interaction of the purified protein with a phospholipid monolayer. Image analysis of electron micrographs of the protein crystals, which diffracted to 3.5 nm respectively, revealed p6 and p3 symmetry. Annexin IV gave two crystal forms with unit cells of 18 x 18 nm and 28 x 28 nm. The former unit cell was similar to a previously described form of annexin VI. The implications of these observations are discussed.  相似文献   

8.
Annexins comprise a multigene family of Ca2+ and phospholipid- binding proteins. They consist of a conserved C-terminal or core domain that confers Ca2+-dependent phospholipid binding and an N-terminal domain that is variable in sequence and length and responsible for the specific properties of each annexin. Crystal structures of various annexin core domains have revealed a high degree of similarity. From these and other studies it is evident that the core domain harbors the calcium-binding sites that interact with the phospholipid headgroups. However, no structure has been reported of an annexin with a complete N-terminal domain. We have now solved the crystal structure of such a full-length annexin, annexin 1. Annexin 1 is active in membrane aggregation and its refined 1.8 A structure shows an alpha-helical N-terminal domain connected to the core domain by a flexible linker. It is surprising that the two alpha-helices present in the N-terminal domain of 41 residues interact intimately with the core domain, with the amphipathic helix 2-12 of the N-terminal domain replacing helix D of repeat III of the core. In turn, helix D is unwound into a flap now partially covering the N-terminal helix. Implications for membrane aggregation will be discussed and a model of aggregation based on the structure will be presented.  相似文献   

9.
BACKGROUND: Annexin V, an abundant anticoagulant protein, has been proposed to exert its effects by self-assembling into highly ordered arrays on phospholipid membranes to form a protective anti-thrombotic shield at the cell surface. The protein exhibits very high-affinity calcium-dependent interactions with acidic phospholipid membranes, as well as specific binding to glycosaminoglycans (GAGs) such as heparin and heparan sulfate, a major component of cell surface proteoglycans. At present, there is no structural information to elucidate this interaction or the role it may play in annexin V function at the cell surface. RESULTS: We report the 1.9 A crystal structure of annexin V in complex with heparin-derived tetrasaccharides. This structure represents the first of a heparin oligosaccharide binding to a protein where calcium ions are essential for the interaction. Two distinct GAG binding sites are situated on opposite protein surfaces. Basic residues at each site were identified from the structure and site-directed mutants were prepared. The heparin binding properties of these mutants were measured by surface plasmon resonance. The results confirm the roles of these mutated residues in heparin binding, and the kinetic and thermodynamic data define the functionally distinct character of each distal binding surface. CONCLUSION: The annexin V molecule, as it self-assembles into an organized array on the membrane surface, can bind the heparan sulfate components of cell surface proteoglycans. A novel model is presented in which proteoglycan heparan sulfate could assist in the localization of annexin V to the cell surface membrane and/or stabilization of the entire molecular assembly to promote anticoagulation.  相似文献   

10.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

11.
Annexin V, an intracellular protein with a calcium-dependent high affinity for anionic phospholipid membranes, acts as an inhibitor of lipid-dependent reactions of the blood coagulation. Antiphospholipid antibodies found in the plasma of patients with antiphospholipid syndrome generally do not interact with phospholipid membranes directly, but recognize (plasma) proteins associated with lipid membranes, mostly prothrombin or beta(2)-glycoprotein I (beta(2)GPI). Previously, it has been proposed that antiphospholipid antibodies may cause thrombosis by displacing annexin V from procoagulant cell surfaces. We used ellipsometry to study the binding of annexin V and of complexes of beta(2)GPI with patient-derived IgG antibodies to beta(2)GPI, commonly referred to as anticardiolipin antibodies (ACA), to phospholipid bilayers composed of phosphatidylcholine (PC) and 20% phosphatidylserine (PS). More specifically, we investigated the competition of these proteins for the binding sites at these bilayers. We show that ACA-beta(2)GPI complexes, adsorbed to PSPC bilayers, are displaced for more than 70% by annexin V and that annexin V binding is unaffected by the presence of ACA-beta(2)GPI complexes. Conversely, annexin V preadsorbed to these bilayers completely prevents adsorption of ACA-beta(2)GPI complexes, and none of the preadsorbed annexin V is displaced by ACA-beta(2)GPI complexes. Using ellipsometry, we also studied the effect of ACA-beta(2)GPI complexes on the interaction of annexin V with the membranes of ionophore-activated blood platelets as a more physiological relevant model of cell membranes. The experiments with blood platelets confirm the high-affinity binding of annexin V to these membranes and unequivocally show that annexin V binding is unaffected by the presence of ACA-beta(2)GPI. In conclusion, our data unambiguously show that ACA-beta(2)GPI complexes are unable to displace annexin V from procoagulant membranes to any significant extent, whereas annexin V does displace the majority of preadsorbed ACA-beta(2)GPI complexes from these membranes.  相似文献   

12.
The annexinopathies: a new category of diseases   总被引:2,自引:0,他引:2  
The annexins are a family of highly homologous phospholipid binding proteins, which share a four-domain structure, with one member of the family - annexin VI - having a duplication consisting of eight domains. Thus far, ten annexins have been described in mammals. Although the biological functions of the annexins have not been definitively established, two human diseases involving annexin abnormalities ('annexinopathies') have been identified as of the time of writing. Overexpression of annexin II occurs in the leukocytes of a subset of patients having a hemorrhagic form of acute promyelocytic leukemia. Underexpression of annexin V occurs on placental trophoblasts in the antiphospholipid syndrome and in preeclampsia. Also, an animal model has been described in which annexin VII is underexpressed and is associated with disease, but the relevance of this animal model to human disease is not yet understood. Future research is likely to elucidate additional 'annexinopathies'.  相似文献   

13.
Lincomycin is a broad-spectrum antibiotic synthesized by Streptomyces lincolnensis that is particularly active against Gram-positive bacteria. It is widely used in human and veterinary applications. The crystal structure of lincomycin has been undertaken with a view to obtain the conformational and structural features of the drug in order to afford a comparison of its structural features with other aminoglycoside antibiotics. We report here the details of its structural and conformational features as determined by single-crystal X-ray crystallography. Crystals of lincomycin hydrochloride are orthorhombic, space group P2(1)2(1)2, with the cell dimensions a=18.5294(3) Angstroms, b=20.5980(4) Angstroms, c=6.17380(10) Angstroms, V=2356.35(7) Angstroms3. The structure was solved using X-ray diffraction data and refined to a final R-value of 0.0391 for 2321 reflections (I > or = 2sigma). The absolute configuration was established using the anomalous dispersion of the sulfur and chlorine atoms in the structure. The molecule consists of an amino acid linked by an amide group to a monosaccharide of galactose stereochemistry. A network of hydrogen-bonds stabilizes the crystal structure.  相似文献   

14.
The soluble protein Ure2p from the yeast Saccharomyces cerevisiae assembles in vitro into straight and insoluble protein fibrils, through subtle changes of conformation. Whereas the structure of soluble Ure2p has been revealed by X-ray crystallography, further characterization of the structure of insoluble Ure2p fibrils is needed. We performed X-ray absorption near-edge spectroscopy (XANES) at the sulfur K-edge to probe the state of Cys221 in the fibrillar form of Ure2pC221 and provide structural information on the structure of Ure2p within fibrils. Although the Ure2p dimer dissociation into its constituent monomers has proven to be a prerequisite for assembly into fibrils, we showed the ability of every Ure2pC221 monomer to establish disulfide bonds upon incubation of the fibrils under oxidizing conditions. Our result indicates either that the constituent unit of the fibrillar form of the protein is a dimeric Ure2p or that the fibrils are made of protofilaments assembled in such a way that the residue C221 from a Ure2p molecule in one protofilament is located in the vicinity of a C221 residue from another molecule belonging to a neighbor protofilament.  相似文献   

15.
Annexins are soluble proteins that bind to biological membranes in a Ca2+-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear. To address this question, we studied the association of AnxA6 with model phospholipid membranes by combining the techniques of quartz crystal microbalance with dissipation monitoring (QCM-D), (cryo-) transmission electron microscopy (TEM) and atomic force microscopy (AFM). The properties of membrane binding and membrane aggregation of AnxA6 were compared to two reference systems, annexin A5 (AnxA5), which is the annexin prototype, and a chimerical AnxA5-dimer molecule, which is able to aggregate two membranes in a symmetrical manner. We show that AnxA6 presents two modes of association with lipid membranes depending on Ca2+-concentration. At low Ca2+-concentration (60–150 μM), AnxA6 binds to membranes via its two coplanar annexin modules and is not able to associate two separate membranes. At high Ca2+-concentration (2 mM), AnxA6 molecules are able to bind two adjacent phospholipid membranes and present a conformation similar to the AnxA6 3D crystallographic structure. Possible biological implications of these novel membrane-binding properties of AnxA6 are discussed.  相似文献   

16.
The formation of two-dimensional crystals of the membrane-bound enzyme microsomal glutathione transferase is sensitive to fractional changes in the lipid-to-protein ratio. Variation of this parameter results in crystal polymorphism. The projection structure of a p6 crystal form of the enzyme has been determined by the use of electron crystallography. The unit cell at 3 A resolution is comprised of two trimers. The hexagonal p6 and the orthorhombic p21212 crystal types have common elements in the packing arrangement which imply dominant crystal contacts. An overall structural similarity between the protein molecules in the two crystal forms is suggested by the projection maps. Furthermore, a comparison of the p6 and p21212 projection maps identifies additional corresponding protein densities which could not be assigned to the microsomal glutathione transferase trimer previously. Surprisingly, an ambiguity of the rotational orientation was found for trimers interspersed at certain positions within the crystal lattice.  相似文献   

17.
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.  相似文献   

18.
Annexins are soluble proteins that can interact with membranes in a Ca2+-dependent manner. Recent studies have shown that they can also undergo Ca2+-independent membrane interactions that are modulated by pH and phospholipid composition. Here, we investigated the structural changes that occurred during Ca2+-independent interaction of annexin B12 with phospholipid vesicles as a function of pH. Electron paramagnetic resonance analysis of a helical hairpin encompassing the D and E helices in the second repeat of the protein showed that this region refolded and formed a continuous amphipathic alpha helix following Ca2+-independent binding to membranes at mildly acidic pH. At pH 4.0, this helix assumed a transmembrane topography, but at pH approximately 5.0-5.5, it was peripheral and approximately parallel to the membrane. The peripheral form was reversibly converted into the transmembrane form by lowering the pH and vice versa. Furthermore, analysis of vesicles incubated with annexin B12 using freeze-fracture electron microscopy methods showed classical intramembrane particles at pH 4.0 but none at pH 5.3. Together, these data raise the possibility that the peripheral-bound form of annexin B12 could act as a kinetic intermediate in the formation of the transmembrane form of the protein.  相似文献   

19.
Isas JM  Kim YE  Jao CC  Hegde PB  Haigler HT  Langen R 《Biochemistry》2005,44(50):16435-16444
Annexins are a family of soluble proteins that can undergo reversible Ca(2+)-dependent interaction with the interfacial region of phospholipid membranes. The helical hairpins on the convex face of the crystal structure of soluble annexins are proposed to mediate binding to membranes, but the mechanism is not defined. For this study, we used a site-directed spin labeling (SDSL) experimental approach to investigate Ca(2+) and membrane-induced structural and dynamic changes that occurred in the helical hairpins encompassing three of the four D and E helices of annexin B12. Electron paramagnetic resonance (EPR) parameters were analyzed for the soluble and Ca(2+)-dependent membrane-bound states of the following nitroxide scans of annexin B12: a continuous 24-residue scan of the D and E helices in the third repeat (residues 219-242) and short scans encompassing the D-E loop regions of the first repeat (residues 68-74) and the fourth repeat (300-305). EPR mobility and accessibility parameters of most sites were similar when the protein was in solution or in the membrane-bound state, and both sets of data were consistent with the crystal structure of the protein. However, membrane-induced changes in mobility and accessibility were observed in all three loop regions, with the most dramatic changes noted at sites corresponding to the highly conserved serine and glycine residues in the loops. EPR accessibility parameters clearly established that nitroxide side chains placed at these sites made direct contact with the bilayer. EPR mobility parameters showed that these sites were very mobile in solution, but immobilized on the EPR time scale in the membrane-bound state. Since the headgroup regions of bilayer phospholipids are relatively mobile in the absence of annexins, Ca(2+)-dependent binding of annexin B12 appears to form a complex in which the mobility of the D-E loop region of the protein and the headgroup region of the phospholipid are highly constrained. Possible biological consequences of annexin-induced restriction of membrane mobility are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号