首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The olfactory system presents a practical model for investigating basic mechanisms involved in patterning connections between peripheral sensory neurons and central targets. Our understanding of olfactory map formation was advanced greatly by the discovery of cAMP signaling as an important determinant of glomerular positioning in the olfactory bulb. Additionally, several cell adhesion molecules have been identified recently that are proposed to regulate homotypic interactions among projecting axons. From these studies a model has emerged to partially explain the wiring of axons from widely dispersed neuron populations in the nasal cavity to relatively stereotyped glomerular positions. These advances have revitalized interest in axon guidance molecules in establishing olfactory topography, but also open new questions regarding how these patterns of guidance cues are established and function, and what other pathways, such as glycosylation, might be involved. This review summarizes the current state of this field and the important molecules that impact on cAMP-dependent mechanism in olfactory axon guidance.  相似文献   

2.
The formation of synaptic connections requires the coordination of specific guidance molecules and spontaneous neuronal activity. The visual system has provided a useful model for understanding the role of these cues in shaping the precise connections from the neural retina to the brain. Here, we demonstrate that two essential genes in the Reelin signaling pathway function during the patterning of synaptic connectivity in the retina. Physiological studies of mice deficient in either reelin or disabled-1 reveal an attenuation of rod-driven retinal responses. This defect is associated with a decrease in rod bipolar cell density and an abnormal distribution of processes in the inner plexiform layer. These results imply that, in addition to its essential role during neuronal migration, the Reelin pathway contributes to the formation of neuronal circuits in the central nervous system.  相似文献   

3.
The olfactory system is a remarkable model for investigating the factors that influence the guidance of sensory axon populations to specific targets in the CNS. Since the initial discovery of the vast odorant receptor (ORs) gene family in rodents and the subsequent finding that these molecules directly influence targeting, several additional olfactory axon guidance cues have been identified. Two of these, ephrins and semaphorins, have well-established functions in patterning axon connections in other systems. In addition, lactosamine-containing glycans are also required for proper targeting and maintenance of olfactory axons, and may also function in other sensory regions. It is now apparent that these and likely other additional molecules are required along with ORs to orchestrate the complex pattern of convergence and divergence that is unique to the olfactory system.  相似文献   

4.
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.  相似文献   

5.
A major goal of modern neuroscience research is to understand the cellular and molecular processes that control the formation, function, and remodeling of chemical synapses. In this article, we discuss the numerous studies that implicate molecules initially discovered for their functions in axon guidance as critical regulators of synapse formation and plasticity. Insights from these studies have helped elucidate basic principles of synaptogenesis, dendritic spine formation, and structural and functional synapse plasticity. In addition, they have revealed interesting dual roles for proteins and cellular mechanisms involved in both axon guidance and synaptogenesis. Much like the dual involvement of morphogens in early cell fate induction and axon guidance, many guidance-related molecules continue to play active roles in controlling the location, number, shape, and strength of neuronal synapses during development and throughout the lifetime of the organism. This article summarizes key findings that link axon guidance molecules to specific aspects of synapse formation and plasticity and discusses the emerging relationship between the molecular and cellular mechanisms that control both axon guidance and synaptogenesis.  相似文献   

6.
The influence of mycoplasmal contamination and somatic cell hybridization on the character of karyotypic variability in cell cultures of Indian muntjac skin fibroblasts has been investigated. Mycoplasma arginini and Acholeplasma laidlawii, used as factors inducing chromosomal instability, do not break the main regulations peculiar to intact control. They regulations are: 1) nonrandom character of cell distribution according to the number of chromosomal deviations from MSVK; 2) specific character of deviations of each chromosome from MSVK; 3) presence of significant connections between separate chromosomes by simultaneous mainly single directed numeral deviations. However, mycoplasmal contamination promotes the increase in the number of deviations in the direction of a decreasing chromosomes number. There is a breach of some connections between chromosomes by simultaneous deviations. They are chromosomes with broken connections according to the number of deviations which form telomeric associations (dicentrics). The number of these associations excel essentially intact control. The formation of new MSVK in subline M2 cells of the Indian muntjac in the process of chromosomal segregation in cell hybrid (M2 x clone of JF1 rat Jensen sarcoma) depends on the presence of significant connections between chromosomes by simultaneous numerical deviations in direction of MSVK formation. They are chromosomes that take part in the formation of new MSVK which form telomeric associations. These associations can be observed till stabilization of new MSVK. Probably, the support of the balance of karyotypic structure by factors inducing chromosomal instability is connected with change of some connections between chromosomes according to the number by simultaneous deviations as well as with the formation of dicentrics.  相似文献   

7.
The detection of odorant signals from the environment and the generation of appropriate behavioral outputs in response to these signals rely on the olfactory system. Olfactory sensory neurons (OSNs) of the olfactory epithelium are located in the nasal cavity and project axons that synapse onto dendrites of second-order neurons in the olfactory bulb (OB) that in turn relay the information gathered to higher order regions of the brain. The connections formed are remarkably accurate such that axons of OSNs expressing the same olfactory receptor innervate specific glomeruli within the complex three-dimensional structure that represents the OB. The molecular determinants that control this complex process are beginning to be identified. In this review, we discuss the role of various families of axon guidance cues and of recently characterized families of adhesion molecules in the formation of stereotypic connections in the olfactory system of mice. Cho and Prince contributed equally.  相似文献   

8.
The mechanisms underlying formation of the basic network of the nervous system are of fundamental interest in developmental neurobiology. During the wiring of the nervous system, newborn neurons send axons that travel long distances to their targets. These axons are directed by environmental cues, known as guidance cues, to their correct destinations. Through extensive studies in vertebrates and invertebrates many of the guidance cues and their receptors have been identified. Recently, guidance molecules have been suggested to have important roles in pathological conditions of the nervous system. Mutations in guidance receptors have been associated with hereditary neurological disorders, and deregulation of guidance cues might be associated with predisposition to epilepsy. In addition, it was suggested that guidance molecules play roles in the ability of the adult nervous system to recover and repair after injury. Thus, molecules that were first discovered as "developmental cues" are now emerging as important factors in neurological disease and injury in the adult.  相似文献   

9.
10.
The formation, maintenance, and plasticity of neural circuits rely upon a complex interplay between progressive and regressive events. Increasingly, new functions are being identified for axon guidance molecules in the dynamic processes that occur within the embryonic and adult nervous system. The magnitude, duration, and spatial activity of axon guidance molecule signaling are precisely regulated by a variety of molecular mechanisms. Here we focus on recent progress in understanding the role of protease-mediated cleavage of guidance factors required for directional axon growth, with a particular emphasis on the role of metalloprotease and γ-secretase. Since axon guidance molecules have also been linked to neural degeneration and regeneration in adults, studies of guidance receptor proteolysis are beginning to define new relationships between neurodevelopment and neurodegeneration. These findings raise the possibility that the signaling checkpoints controlled by proteases could be useful targets to enhance regeneration.  相似文献   

11.
The formation of neuronal networks is governed by a limited number of guidance molecules, yet it is immensely complex. The complexity of guidance cues is augmented by posttranslational modification of guidance molecules and their receptors. We report here that cleavage of the floor plate guidance molecule F-spondin generates two functionally opposing fragments: a short-range repellent protein deposited in the membrane of floor plate cells and an adhesive protein that accumulates at the basement membrane. Their coordinated activity, acting respectively as a short-range repellant and a permissive short-range attractant, constricts commissural axons to the basement membrane beneath the floor plate cells. We further demonstrate that the repulsive activity of the inhibitory fragment of F-spondin requires its presentation by the lipoprotein receptor-related protein (LRP) receptors apolipoprotein E receptor 2, LRP2/megalin, and LRP4, which are expressed in the floor plate. Thus, proteolysis and membrane interaction coordinate combinatorial guidance signaling originating from a single guidance cue.  相似文献   

12.
The Eph family of receptor tyrosine kinases and their ‘ligands’, the ephrins, have been shown to play key roles in a number of different developmental processes such as cell migration, boundary formation, axon guidance, synapse formation and vasculogenesis. Here, we summarize recent findings derived from investigating the role of the EphA family during development of the retinotectal and vomeronasal projection uncovering a role of ephrin-A molecules as axon guidance receptors.  相似文献   

13.
14.
Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2lox/lox;OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2lox/lox;OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.  相似文献   

15.
Komiyama T  Sweeney LB  Schuldiner O  Garcia KC  Luo L 《Cell》2007,128(2):399-410
Gradients of axon guidance molecules instruct the formation of continuous neural maps, such as the retinotopic map in the vertebrate visual system. Here we show that molecular gradients can also instruct the formation of a discrete neural map. In the fly olfactory system, axons of 50 classes of olfactory receptor neurons (ORNs) and dendrites of 50 classes of projection neurons (PNs) form one-to-one connections at discrete units called glomeruli. We provide expression, loss- and gain-of-function data to demonstrate that the levels of transmembrane Semaphorin-1a (Sema-1a), acting cell-autonomously as a receptor or part of a receptor complex, direct the dendritic targeting of PNs along the dorsolateral to ventromedial axis of the antennal lobe. Sema-1a also regulates PN axon targeting in higher olfactory centers. Thus, graded expression of Sema-1a contributes to connection specificity from ORNs to PNs and then to higher brain centers, ensuring proper representation of olfactory information in the brain.  相似文献   

16.
17.
B plexins activate Rho through PDZ-RhoGEF   总被引:3,自引:0,他引:3  
Plexins are receptors for the repulsive axon guidance molecules semaphorins. Previously, we have shown that plexin-B1 binds activated Rac, but that clustering of plexin-B1 causes Rho activation, resulting in stress fiber formation. Using the yeast two-hybrid system, we found that the C-terminus of B plexins interacted directly with Rho-specific exchange factors, via their PDZ domain. Mutation of the carboxy-terminal amino acids of plexin-B1 or coexpression of a dominant negative PDZ-RhoGEF abrogated the ability of plexin-B1 to cause stress fiber formation. Our results demonstrate a role for PDZ-RhoGEF in B plexin-mediated activation of Rho/Rho kinase signaling, implicated in the regulation of axon guidance and cell migration.  相似文献   

18.
Li HS  Chen JH  Wu W  Fagaly T  Zhou L  Yuan W  Dupuis S  Jiang ZH  Nash W  Gick C  Ornitz DM  Wu JY  Rao Y 《Cell》1999,96(6):807-818
The olfactory bulb plays a central role in olfactory information processing through its connections with both peripheral and cortical structures. Axons projecting from the olfactory bulb to the telencephalon are guided by a repulsive activity in the septum. The molecular nature of the repellent is not known. We report here the isolation of vertebrate homologs of the Drosophila slit gene and show that Slit protein binds to the transmembrane protein Roundabout (Robo). Slit is expressed in the septum whereas Robo is expressed in the olfactory bulb. Functionally, Slit acts as a chemorepellent for olfactory bulb axons. These results establish a ligand-receptor relationship between two molecules important for neural development, suggest a role for Slit in olfactory bulb axon guidance, and reveal the existence of a new family of axon guidance molecules.  相似文献   

19.
Remarkable advances have been made recently to identify the molecules required for the development of neural connections within the brain. A range of ligands and receptors have been uncovered that guide extending neurons to appropriate targets and away from inappropriate areas. These molecules point to the signalling mechanisms that guide the neurons and provide entry points for the further dissection of this process. Here I highlight the part genetic screens and analyses have played in revealing some of the key players in neuronal guidance.  相似文献   

20.
Spatial organization and genetic information in brain development   总被引:1,自引:0,他引:1  
In the course of brain development neurons acquire qualitative and quantitative biochemical and morphological properties which depend on the position of the cells within the nervous system. In the dimensions tangential to multilayered cell sheets mechanisms contributing to spatial order include induction by adjacent tissue as well as internal generation of morphogenetic fields (presumably by reactions involving autocatalysis and lateral inhibition). In the dimensions across the sheet cells of different types are produced in one layer and sort into another layer, guided presumably by contact mediated cell interaction. Positional and directional cues encoded in the developing brain are essentially involved in axonal guidance and the formation of neuronal connections. In mammals and man, the number of neurons and their connections in the brain is much higher than the number of genes. This is possible because there are repetitive neuronal circuits in the brain, and there is topographic order of connections between different brain areas. For instance, few quantitatively graded markers would suffice for specifying the projection of one area of the nervous system onto another, generating spatial order for a large number of fibers while requiring only a limited amount of genetic information. Higher brain functions, such as learning and memory, may logically require only a neural network consisting of repetitive subunits. On the other hand, it is an evolutionary advantage for an organism to be endowed, from the outset, with a pattern of neural connections which is subtly and quantitatively tuned for efficiency in dealing with the environment, while remaining flexible for change and adaptation in the course of learning. Estimates are given suggesting that a considerable part of the genetic information in DNA may be invested for such quantitative specification of connections within the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号