首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The mechanism of reversible transfer of the gamma-phosphate group of ATP by Escherichia coli phosphoenolpyruvate carboxykinase (PCK) on to its substrate is of great interest. It is known that metallofluorides are accurate analogs of the transition state in the context of kinase mechanisms. Therefore, two complexes of PCK, one with AlF(3), Mg(2+) and ADP (complex I), the other with AlF(3), Mg(2+), ADP and pyruvate (complex II) were crystallized. The X-ray crystal structures of these two complexes were determined at 2.0 A resolution. The Al atom has trigonal bipyramidal geometry that mimics the transition state of phosphoryl transfer. The Al atom is at a distance of 2.8 A and 2.9 A from an oxygen atom of the beta-phosphoryl group of ADP in complex I and II, respectively. A water molecule in complex I and an oxygen atom of the pyruvate in complex II are located along the axis of the trigonal bipyramid on the side opposite to the beta-phosphoryl oxygen with respect to the equatorial plane, suggesting that the complexes are close mimics of the transition state. Along with the presence of positively charged species around the AlF(3) moiety, these results indicate that phosphoryl transfer occurs via a direct displacement mechanism with associative qualities.  相似文献   

2.
The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.4 Angstroms resolution native structure of A. succiniciproducens PCK has also been determined. It has been found that upon binding of substrate, PCK undergoes a conformational change. Two domains of the molecule fold towards each other, with the substrates and metal ions held in a cleft formed between the two domains. This domain movement is believed to accelerate the reaction PCK catalyzes by forcing bulk solvent molecules out of the active site. Although the crystal structure of A. succiniciproducens PCK with bound substrate and metal ions is related to the structures of PCK from Escherichia coli and Trypanosoma cruzi, it is the first crystal structure from this class of enzymes that clearly shows an important surface loop (residues 383-397) from the C-terminal domain, hydrogen bonding with the peptide backbone of the active site residue Arg60. The interaction between the surface loop and the active site backbone, which is a parallel beta-sheet, seems to be a feature unique of A. succiniciproducens PCK. The association between the loop and the active site is the third type of interaction found in PCK that is thought to play a part in the domain closure. This loop also appears to help accelerate catalysis by functioning as a 'lid' that shields water molecules from the active site.  相似文献   

3.
N-Acetyl-L-glutamate kinase (NAGK), a member of the amino acid kinase family, catalyzes the second and frequently controlling step of arginine synthesis. The Escherichia coli NAGK crystal structure to 1.5 A resolution reveals a 258-residue subunit homodimer nucleated by a central 16-stranded molecular open beta sheet sandwiched between alpha helices. In each subunit, AMPPNP, as an alphabetagamma-phosphate-Mg2+ complex, binds along the sheet C edge, and N-acetyl-L-glutamate binds near the dyadic axis with its gamma-COO- aligned at short distance from the gamma-phosphoryl, indicating associative phosphoryl transfer assisted by: (1) Mg2+ complexation; (2) the positive charges on Lys8, Lys217, and on two helix dipoles; and (3) by hydrogen bonding with the y-phosphate. The structural resemblance with carbamate kinase and the alignment of the sequences suggest that NAGK is a structural and functional prototype for the amino acid kinase family, which differs from other acylphosphate-making devices represented by phosphoglycerate kinase, acetate kinase, and biotin carboxylase.  相似文献   

4.
The Type I isozyme of rat hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) is comprised of N- and C-terminal domains, associated with regulatory and catalytic functions, respectively. Extensive sequence similarity between the domains is consistent with evolution of the enzyme by gene duplication and fusion. Cleavage at tryptic sites located in the C-terminal domain is markedly sensitive to ligands present during digestion, while analogous sites in the N-terminal domain are either resistant to trypsin or unaffected by the presence of ligands. These results imply a lack of structural equivalence between the N- and C-terminal domains, with the overall structure of the N-terminal domain being "tighter" and with a major component of ligand-induced conformational changes being focused in the C-terminal domain. Based on a previously proposed structure for brain hexokinase, protection by substrate hexoses is attributed to substrate-induced closing of a cleft in the C-terminal domain. Similar protection at C-terminal cleavage sites results from binding of inhibitory hexose-6-phosphates to the N-terminal domain. In addition, hexose-6-phosphates evoke cleavage at a site, T5, located in a region that has been associated with binding of ATP to the C-terminal domain. Thus, alterations in this region, coupled with reduced accessibility resulting from cleft closure, may account for the mutually exclusive binding of inhibitory hexose-6-phosphates and substrate ATP. In the absence of Mg2+, all nucleoside triphosphates examined (ATP, UTP, CTP, and GTP) protected against digestion by trypsin. In contrast, ATP-Mg2+ stabilized the C-terminal domain but destabilized the N-terminal domain, while the chelated forms of the other nucleoside triphosphates were similar to the unchelated forms in their effect on proteolysis; the unique response to ATP-Mg2+ reflects the specificity for ATP as a substrate.  相似文献   

5.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   

6.
Mevalonate kinase catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate, a key intermediate in the pathways of isoprenoids and sterols. Deficiency in mevalonate kinase activity has been linked to mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome (HIDS). The crystal structure of rat mevalonate kinase in complex with MgATP has been determined at 2.4-A resolution. Each monomer of this dimeric protein is composed of two domains with its active site located at the domain interface. The enzyme-bound ATP adopts an anti conformation, in contrast to the syn conformation reported for Methanococcus jannaschii homoserine kinase. The Mg(2+) ion is coordinated to both beta- and gamma-phosphates of ATP and side chains of Glu(193) and Ser(146). Asp(204) is making a salt bridge with Lys(13), which in turn interacts with the gamma-phosphate. A model of mevalonic acid can be placed near the gamma-phosphoryl group of ATP; thus, the C5 hydroxyl is located within 4 A from Asp(204), Lys(13), and the gamma-phosphoryl of ATP. This arrangement of residues strongly suggests: 1) Asp(204) abstracts the proton from C5 hydroxyl of mevalonate; 2) the penta-coordinated gamma-phosphoryl group may be stabilized by Mg(2+), Lys(13), and Glu(193); and 3) Lys(13) is likely to influence the pK(a) of the C5 hydroxyl of the substrate. V377I and I268T are the most common mutations found in patients with HIDS. Val(377) is located over 18 A away from the active site and a conservative replacement with Ile is unlikely to yield an inactive or unstable protein. Ile-268 is located at the dimer interface, and its Thr substitution may disrupt dimer formation.  相似文献   

7.
ATP sulfurylase catalyzes the first step in the activation of sulfate by transferring the adenylyl-moiety (AMP approximately ) of ATP to sulfate to form adenosine 5'-phosphosulfate (APS) and pyrophosphate (PP(i)). Subsequently, APS kinase mediates transfer of the gamma-phosphoryl group of ATP to APS to form 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and ADP. The recently determined crystal structure of yeast ATP sulfurylase suggests that its C-terminal domain is structurally quite independent from the other domains, and not essential for catalytic activity. It seems, however, to dictate the oligomerization state of the protein. Here we show that truncation of this domain results in a monomeric enzyme with slightly enhanced catalytic efficiency. Structural alignment of the C-terminal domain indicated that it is extremely similar in its fold to APS kinase although not catalytically competent. While carrying out these structural and functional studies a surface groove was noted. Careful inspection and modeling revealed that the groove is sufficiently deep and wide, as well as properly positioned, to act as a substrate channel between the ATP sulfurylase and APS kinase-like domains of the enzyme.  相似文献   

8.
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.  相似文献   

9.
Salmonella typhimurium YegS is a protein conserved in many prokaryotes. Although the function of YegS is not definitively known, it has been annotated as a potential diacylglycerol or sphingosine kinase based on sequence similarity with eukaryotic enzymes of known function. To further characterize YegS, we report its purification, biochemical analysis, crystallization, and structure determination. The crystal structure of YegS reveals a two-domain fold related to bacterial polyphosphate/ATP NAD kinases, comprising a central cleft between an N-terminal alpha/beta domain and a C-terminal two-layer beta-sandwich domain; conserved structural features are consistent with nucleotide binding within the cleft. The N-terminal and C-terminal domains of YegS are however counter-rotated, relative to the polyphosphate/ATP NAD kinase archetype, such that the potential nucleotide binding site is blocked. There are also two Ca2+ binding sites and two hydrophobic clefts, one in each domain of YegS. Analysis of mutagenesis data from eukaryotic homologues of YegS suggest that the N-terminal cleft may bind activating lipids while the C-terminal cleft may bind the lipid substrate. Microcalorimetry experiments showed interaction between recombinant YegS and Mg2+, Ca2+, and Mn2+ ions, with a weaker interaction also observed with polyphosphates and ATP. However, biochemical assays showed that recombinant YegS is endogenously neither an active diacylglycerol nor sphingosine kinase. Thus although the bioinformatics analysis and structure of YegS indicate that many of the ligand recognition determinants for lipid kinase activity are present, the absence of such activity may be due to specificity for a different lipid substrate or the requirement for activation by an, as yet, undetermined mechanism. In this regard the specific interaction of YegS with the periplasmic chaperone OmpH, which we demonstrate from pulldown experiments, may be of significance. Such an interaction suggests that YegS can be translocated to the periplasm and directed to the outer-membrane, an environment that may be required for enzyme activity.  相似文献   

10.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

11.
BACKGROUND: Streptococcus mutans pyrophosphatase (Sm-PPase) is a member of a relatively uncommon but widely dispersed sequence family (family II) of inorganic pyrophosphatases. A structure will answer two main questions: is it structurally similar to the family I PPases, and is the mechanism similar? RESULTS: The first family II PPase structure, that of homodimeric Sm-PPase complexed with metal and sulfate ions, has been solved by X-ray crystallography at 2.2 A resolution. The tertiary fold of Sm-PPase consists of a 189 residue alpha/beta N-terminal domain and a 114 residue mixed beta sheet C-terminal domain and bears no resemblance to family I PPase, even though the arrangement of active site ligands and the residues that bind them shows significant similarity. The preference for Mn2+ over Mg2+ in family II PPases is explained by the histidine ligands and bidentate carboxylate coordination. The active site is located at the domain interface. The C-terminal domain is hinged to the N-terminal domain and exists in both closed and open conformations. CONCLUSIONS: The active site similiarities, including a water coordinated to two metal ions, suggest that the family II PPase mechanism is "analogous" (not "homologous") to that of family I PPases. This is a remarkable example of convergent evolution. The large change in C-terminal conformation suggests that domain closure might be the mechanism by which Sm-PPase achieves specificity for pyrophosphate over other polyphosphates.  相似文献   

12.
This paper provides evidence for an interaction of D443 in the N domain of Na(+),K(+)-ATPase with a Mg(2+) ion. Wild-type, D443N/A/C and S445A mutants of porcine Na(+),K(+)-ATPase (alpha1beta1) have been expressed in Pichia pastoris. By comparison with wild-type, D443N reduces the turn-over rate by about 40%. Binding affinity of ATP, measured directly, was not affected by D443N, D443A, or D443C mutations. AMP-PNP-Fe(2+)-catalyzed oxidative cleavage of Na(+),K(+)-ATPase produces two characteristic fragments, at (708)VNDS (P domain) and near (440)VAGDA (N domain), respectively. In the D443N and D443A mutants, both cleavages are suppressed, indicating an interaction between the residues with AMP-PNP-Fe(2+) bound. Previous work suggested that with ATP-Fe(2+) bound the N and P domains come into proximity, both D710 and D443 making contact with a single Fe(2+) (or Mg(2+)) ion. However, the crystal structure of Ca(2+)-ATPase with bound AMP-PCP and Mg(2+) confirm the involvement of D703 (D710) but show that E439 (D443) is too far to make contact with the Mg(2+). By contrast, in the crystal structure with bound ADP, AlF(4), and Mg(2+), representing the E(1)-P conformation, two Mg(2+) ions were observed. Significantly, ADP-Fe(2+)-mediated oxidative cleavage of renal Na,K-ATPase produces the fragment near (440)VAGDA (N domain), while the cleavage at (708)VNDS (P domain) is almost completely absent. The results are explained economically by the hypothesis that ATP is bound with two Mg(2+) (Fe(2+)) ions, a "catalytic" Mg(2+) interacting with D710 via the gamma phosphate and a "structural" Mg(2+) interacting with D443 via the alpha and beta phosphates and a water molecule, respectively.  相似文献   

13.
O-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase.  相似文献   

14.
The mechanism of specific cleavage of the terminal phosphoryl group in hydrolysis of ATP, and the role of Mg2+ in the hydrolysis were studied by ab initio molecular orbital calculations. The tetravalent anion of methyl triphosphate was used as a model of the ATP anion, and its electronic structures were determined as a function of the distance between Mg2+ and its beta-phosphoryl group. We found that the closer location of Mg2+ to the beta-phosphoryl group than to the alpha- or gamma-phosphoryl group was effective in weakening the P-O bond at which the cleavage of ATP catalyzed by most enzymes takes place. Moreover, the orbital coefficient of the frontier electron of P gamma, which is related to the nucleophilic reaction, was shown to increase greatly with increasing interaction between Mg2+ and the beta-phosphoryl group.  相似文献   

15.
Lim K  Read RJ  Chen CC  Tempczyk A  Wei M  Ye D  Wu C  Dunaway-Mariano D  Herzberg O 《Biochemistry》2007,46(51):14845-14853
Pyruvate phosphate dikinase (PPDK) catalyzes the reversible conversion of phosphoenolpyruvate (PEP), AMP, and Pi to pyruvate and ATP. The enzyme contains two remotely located reaction centers: the nucleotide partial reaction takes place at the N-terminal domain, and the PEP/pyruvate partial reaction takes place at the C-terminal domain. A central domain, tethered to the N- and C-terminal domains by two closely associated linkers, contains a phosphorylatable histidine residue (His455). The molecular architecture suggests a swiveling domain mechanism that shuttles a phosphoryl group between the two reaction centers. In an early structure of PPDK from Clostridium symbiosum, the His445-containing domain (His domain) was positioned close to the nucleotide binding domain and did not contact the PEP/pyruvate-binding domain. Here, we present the crystal structure of a second conformational state of C. symbiosum PPDK with the His domain adjacent to the PEP-binding domain. The structure was obtained by producing a three-residue mutant protein (R219E/E271R/S262D) that introduces repulsion between the His and nucleotide-binding domains but preserves viable interactions with the PEP/pyruvate-binding domain. Accordingly, the mutant enzyme is competent in catalyzing the PEP/pyruvate half-reaction but the overall activity is abolished. The new structure confirms the swivel motion of the His domain. In addition, upon detachment from the His domain, the two nucleotide-binding subdomains undergo a hinge motion that opens the active-site cleft. A similar hinge motion is expected to accompany nucleotide binding (cleft closure) and release (cleft opening). A model of the coupled swivel and cleft opening motions was generated by interpolation between two end conformations, each with His455 positioned for phosphoryl group transfer from/to one of the substrates. The trajectory of the His domain avoids major clashes with the partner domains while preserving the association of the two linker segments.  相似文献   

16.
To better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact. This "greasy" patch may lubricate the shearing motion associated with domain rotation, and the opening and closing of the active-site cleft. Although Apo appears to be quite dynamic, many important residues for MgATP binding and phosphoryl transfer in the active site are preformed. Residues around the adenine ring of ATP and residues involved in phosphoryl transfer from the large lobe are mostly preformed, whereas residues involved in ribose binding and in the Gly-rich loop are not. Prior to ligand binding, Lys72 and the C-terminal tail, two important ATP-binding elements are also disordered. The surface created in the active site is contoured to bind ATP, but not GTP, and appears to be held in place by a stable hydrophobic core, which includes helices C, E, and F, and beta strand 6. This core seems to provide a network for communicating from the active site, where nucleotide binds, to the peripheral peptide-binding F-to-G helix loop, exemplified by Phe239. Two potential lines of communication are the D helix and the F helix. The conserved Trp222-Phe238 network, which lies adjacent to the F-to-G helix loop, suggests that this network would exist in other protein kinases and may be a conserved means of communicating ATP binding from the active site to the distal peptide-binding ledge.  相似文献   

17.
The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.  相似文献   

18.
Finley NL  Howarth JW  Rosevear PR 《Biochemistry》2004,43(36):11371-11379
Cardiac troponin C (cTnC) is the Ca(2+)-binding component of the troponin complex and, as such, is the Ca(2+)-dependent switch in muscle contraction. This protein consists of two globular lobes, each containing a pair of EF-hand metal-binding sites, connected by a linker. In the N lobe, Ca(2+)-binding site I is inactive and Ca(2+)-binding site II is primarily responsible for initiation of muscle contraction. The C lobe contains Ca(2+)/Mg(2+)-binding sites III and IV, which bind Mg(2+) with lower affinity and play a structural as well as a secondary role in modulating the Ca(2+) signal. To understand the structural consequences of Ca(2+)/Mg(2+) exchange in the C lobe, we have determined the NMR solution structure of the Mg(2+)-loaded C lobe, cTnC(81-161), in a complex with the N domain of cardiac troponin I, cTnI(33-80), and compared it with a refined Ca(2+)-loaded structure. The overall tertiary structure of the Mg(2+)-loaded C lobe is very similar to that of the refined Ca(2+)-loaded structure as evidenced by the root-mean-square deviation of 0.94 A for all backbone atoms. While metal-dependent conformational changes are minimal, substitution of Mg(2+) for Ca(2+) is characterized by condensation of the C-terminal portion of the metal-binding loops with monodentate Mg(2+) ligation by the conserved Glu at position 12 and partial closure of the cTnI hydrophobic binding cleft around site IV. Thus, conformational plasticity in the Ca(2+)/Mg(2+)-dependent binding loops may represent a mechanism to modulate C-lobe cTnC interactions with the N domain of cTnI.  相似文献   

19.
The ATP synthase of the thermoalkaliphilic Bacillus sp. TA2.A1 operates exclusively in ATP synthesis direction. In the crystal structure of the nucleotide-free alpha(3)beta(3)gamma epsilon subcomplex (TA2F(1)) at 3.1 A resolution, all three beta subunits adopt the open beta(E) conformation. The structure shows salt bridges between the helix-turn-helix motif of the C-terminal domain of the beta(E) subunit (residues Asp372 and Asp375) and the N-terminal helix of the gamma subunit (residues Arg9 and Arg10). These electrostatic forces pull the gamma shaft out of the rotational center and impede rotation through steric interference with the beta(E) subunit. Replacement of Arg9 and Arg10 with glutamines eliminates the salt bridges and results in an activation of ATP hydrolysis activity, suggesting that these salt bridges prevent the native enzyme from rotating in ATP hydrolysis direction. A similar bending of the gamma shaft as in the TA2F(1) structure was observed by single-particle analysis of the TA2F(1)F(o) holoenzyme.  相似文献   

20.
Succinyl-CoA synthetase (SCS) catalyzes the reversible interchange of purine nucleoside diphosphate, succinyl-CoA, and Pi with purine nucleoside triphosphate, succinate, and CoA via a phosphorylated histidine (H246alpha) intermediate. Two potential nucleotide-binding sites were predicted in the beta-subunit, and have been differentiated by photoaffinity labeling with 8-N3-ATP and by site-directed mutagenesis. It was demonstrated that 8-N3-ATP is a suitable analogue for probing the nucleotide-binding site of SCS. Two tryptic peptides from the N-terminal domain of the beta-subunit were labeled with 8-N3-ATP. These corresponded to residues 107-119beta and 121-146beta, two regions lying along one side of an ATP-grasp fold. A mutant protein with changes on the opposite side of the fold (G53betaV/R54betaE) was unable to be phosphorylated using ATP or GTP, but could be phosphorylated by succinyl-CoA and Pi. A mutant protein designed to probe nucleotide specificity (P20betaQ) had a Km(app) for GTP that was more than 5 times lower than that of wild-type SCS, whereas parameters for the other substrates remained unchanged. Mutations of residues in the C-terminal domain of the beta-subunit designed to distrupt one loop of the Rossmann fold (I322betaA, and R324betaN/D326betaA) had the greatest effect on the binding of succinate and CoA. They did not disrupt the phosphorylation of SCS with nucleotides. It was concluded that the nucleotide-binding site is located in the N-terminal domain of the beta-subunit. This implies that there are two active sites approximately 35 A apart, and that the H246alpha loop moves between them during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号