首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

2.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

3.
Multiple SH2-mediated interactions in v-src-transformed cells.   总被引:7,自引:0,他引:7       下载免费PDF全文
The Src homology 2 (SH2) domain is a noncatalytic region which is conserved among a number of signaling and transforming proteins, including cytoplasmic protein-tyrosine kinases and Ras GTPase-activating protein (GAP). Genetic and biochemical data indicate that the SH2 domain of the p60v-src (v-Src) protein-tyrosine kinase is required for full v-src transforming activity and may direct the association of v-Src with specific tyrosine-phosphorylated proteins. To test the ability of the v-Src SH2 domain to mediate protein-protein interactions, v-Src polypeptides were expressed as fusion proteins in Escherichia coli. The bacterial v-Src SH2 domain bound a series of tyrosine-phosphorylated proteins in a lysate of v-src-transformed Rat-2 cells, including prominent species of 130 and 62 kDa (p130 and p62). The p130 and p62 tyrosine-phosphorylated proteins that complexed v-Src SH2 in vitro also associated with v-Src in v-src-transformed Rat-2 cells; this in vivo binding was dependent on the v-Src SH2 domain. In addition to binding soluble p62 and p130, the SH2 domains of v-Src, GAP, and v-Crk directly recognized these phosphotyrosine-containing proteins which had been previously denatured and immobilized on a filter. In addition, the SH2 domains of GAP and v-Crk bound to the GAP-associated protein p190 immobilized on a nitrocellulose membrane. These results show that SH2 domains bind directly to tyrosine-phosphorylated proteins and that the Src SH2 domain can bind phosphorylated targets of the v-Src kinase domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The v-Src SH3 domain binds phosphatidylinositol 3''-kinase.   总被引:27,自引:9,他引:18       下载免费PDF全文
Fibroblasts transformed by v-src or by related oncogenes encoding activated tyrosine kinases contain elevated levels of polyphosphoinositides with phosphate at the D-3 position of the inositol ring, as a result of the activation of phosphatidylinositol (PI) 3'-kinase. v-src-transformed cells also contain increased levels of PI 3'-kinase activity immunoprecipitable with anti-phosphotyrosine antibodies; furthermore, PI 3'-kinase can be detected in association with the v-Src tyrosine kinase. To identify regions of v-Src that can interact with PI 3'-kinase, the v-Src SH2 and SH3 domains were expressed in bacteria and incubated with lysates of normal chicken embryo fibroblasts. In vitro, the v-Src SH3 domain, but not the SH2 domain, bound PI 3'-kinase in lysates of uninfected chicken embryo fibroblasts. Substitutions of two highly conserved SH3 residues implicated in ligand binding abolished the ability of the v-Src SH3 domain to associate with PI 3'-kinase. Furthermore, the v-Src SH3 domain bound in vitro to the amino-terminal region of the p85 alpha subunit of PI 3'-kinase. These results suggest that the v-Src SH3 domain may mediate an interaction between the v-Src tyrosine kinase and PI 3'-kinase, by direct binding to p85.  相似文献   

5.
The Nck adaptor protein comprises a single C-terminal SH2 domain and three SH3 domains. The domain structure of Nck suggests that Nck links tyrosine kinase substrates to proteins containing proline-rich motifs. Here we show that Bcr/Abl tyrosine kinase, and three tyrosine phosphorylated proteins (115, 120 and 155 kDa) are co-immunoprecipitated with antibody against Nck from lysates of the human leukaemia cell line K562. By means of affinity purification with the Nck-binding phosphopeptide EPGPY(P)AQPSV, we could also detect the association of endogenous Nck with the proto-oncogene product Cbl. An investigation of the nature of interactions revealed that Bcr/Abl, Cbl, and the 155-kDa tyrosine phosphotyrosine bind exclusively to the SH3 domains of Nck. In addition, none of the single SH3 domains of Nck expressed as glutathione-S-transferase (GST) fusion proteins is able to interact with the proline-rich ligands. However, combined first and second SH3 domains have the capacity to bind Bcr/Abl, Chl and p155. Mutations of conserved tryptophan to Lysine in either of the combined first and second SH3 domains completely abolish ligand binding. These data suggest that cooperation exists among the SH3 domains of Nck for a high-affinity binding of proteins containing proline-rich motifs.  相似文献   

6.
Host range mutants of Schmidt-Ruppin v-src that transform chicken embryo fibroblasts (CEF) but not Rat-2 cells were generated previously by linker insertion-deletion mutagenesis (J. E. DeClue and G. S. Martin, J. Virol. 63:542-554, 1989). One of these mutants, SRX5, in which Tyr-416 is substituted by the sequence Ser Arg Asp, retained high levels of kinase activity in vitro and in vivo, both in CEF and in Rat-2 cells. Phosphorylation of p36 (the calpactin I heavy chain) was drastically reduced in cells expressing SRX5 src, suggesting that the phenotype of SRX5 results from an alteration in substrate recognition by the src kinase. Three mutants, SPX1, SHX13, and XD6, containing linker insertions or small deletions within the src homology 2 (SH2) region, induced reduced levels of kinase activity in both CEF and Rat-2 cells. However, the residual levels of kinase activity in Rat-2 cells were above the threshold at which wild-type pp60v-src transforms Rat-2 cells, indicating that the reduction in kinase activity was not sufficient to account for the failure to transform. Cells infected by these mutants exhibited reduced levels of phosphorylation of 120- and 62-kDa proteins. We have reported elsewhere (M. F. Moran, C. A. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson, Proc. Natl. Acad. Sci. USA 87:8622-8626, 1990) that ras GTPase-activating protein GAP and associated protein p62 are not tyrosine phosphorylated in Rat-2 cells expressing SHX13 or XD6. The transformation defect in Rat-2 cells may result from the failure to phosphorylate those proteins. The fifth mutant, XD4, contains a deletion which removes all of the src homology 3 (SH3) and most of the SH2 sequences of src. The protein encoded by XD4 is active as a kinase when expressed in CEF, indicating that in CEF the SH2 and SH3 regions of v-src are not necessary for kinase activity and transformation. The XD4 src product is not tyrosine phosphorylated and is inactive as a kinase when expressed in Rat-2 cells. Thus, host cell factors can affect the tyrosine phosphorylation and activity of the v-src kinase in the absence of the SH2 and SH3 regions. These results indicate that the host-dependent transformation phenotype results from alterations in src kinase activity and substrate specificity.  相似文献   

7.
p60v-src has been shown to associate with a detergent-insoluble cellular matrix containing cytoskeletal proteins, but p60c-src does not bind to this matrix. We analyzed the association of mutant src proteins with the matrix and found that mutants which lack an amino-terminal portion (residues 149 to 169) of the SH2 domain cannot bind to the matrix. Neither the SH3 region nor other portions of the SH2 region were required for association. We also tested protein kinase-defective mutants and chimeras of p60v-src and p60c-src. We found a strong correlation between the kinase activity of p60src and its association with the detergent-insoluble matrix. Double infection of kinase-defective and kinase-active mutants did not result in matrix binding of the kinase-defective src proteins. We also found that Tyr-416, the major site of autophosphorylation in p60v-src, was not required for matrix association.  相似文献   

8.
We have established the human nck sequence as a new oncogene. Nck encodes one SH2 and three SH3 domains, the Src homology motifs found in nonreceptor tyrosine kinases, Ras GTPase-activating protein, phosphatidylinositol 3-kinase, and phospholipase C-gamma. Overexpression of human nck in 3Y1 rat fibroblasts results in transformation as judged by alteration of cell morphology, colony formation in soft agar, and tumor formation in nude BALB/c mice. However, overexpression of nck does not induce detectable elevation of the phosphotyrosine content of specific proteins, as is observed for v-crk, another SH2/SH3-containing oncogene. Despite this fact, we demonstrate that Nck retains the ability to bind tyrosine phosphorylated proteins in vitro, using a fusion protein of Nck with glutathione-S-transferase (GST). Moreover, when incubated with lysates prepared from v-src-transformed 3Y1 cells or the nck-overexpressing cell lines, GST-Nck binds to both p60v-src and serine/threonine kinases, respectively. Although phosphotyrosine levels are not elevated in the nck-expressing fibroblasts, vanadate treatment of these cells results in a phosphotyrosine pattern that is altered from the parental 3Y1 pattern, suggestive of a perturbation of indigenous tyrosine kinase pathways. These results suggest the possibility that human nck induces transformation in 3Y1 fibroblasts by virtue of its altered affinity or specificity for the normal substrates of its rat homolog and that Nck may play a role in linking tyrosine and serine/threonine kinase pathways within the cell.  相似文献   

9.
The p85alpha subunit of phosphatidylinositol 3-kinase (PI-3k) forms a complex with a protein network associated with oncogenic fusion tyrosine kinases (FTKs) such as BCR/ABL, TEL/ABL, TEL/JAK2, TEL/PDGFbetaR, and NPM/ALK, resulting in constitutive activation of the p110 catalytic subunit of PI-3k. Introduction of point mutations in the N-terminal and C-terminal SH2 domain and SH3 domain of p85alpha, which disrupt their ability to bind phosphotyrosine and proline-rich motifs, respectively, abrogated their interaction with the BCR/ABL protein network. The p85alpha mutant protein (p85mut) bearing these mutations was unable to interact with BCR/ABL and other FTKs, while its binding to the p110alpha catalytic subunit of PI-3k was intact. In addition, binding of Shc, c-Cbl, and Gab2, but not Crk-L, to p85mut was abrogated. p85mut diminished BCR/ABL-dependent activation of PI-3k and Akt kinase, the downstream effector of PI-3k. This effect was associated with the inhibition of BCR/ABL-dependent growth of the hematopoietic cell line and murine bone marrow cells. Interestingly, the addition of interleukin-3 (IL-3) rescued BCR/ABL-transformed cells from the inhibitory effect of p85mut. SCID mice injected with BCR/ABL-positive hematopoietic cells expressing p85mut survived longer than the animals inoculated with BCR/ABL-transformed counterparts. In conclusion, we have identified the domains of p85alpha responsible for the interaction with the FTK protein network and transduction of leukemogenic signaling.  相似文献   

10.
The product of the viral src gene (v-src) is the protein tyrosine kinase pp60v-src. Among the known consequences of pp60v-src activity is the reduction in permeability of gap junctions, an effect that is counteracted by the calcium antagonist TMB-8 (8-N,N-[diethylamino]octyl-3,4,5-trimethoxybenzoate). We show here that a decrease in intracellular pH (pHi) also counteracts the v-src effect: junctional permeability of cells containing active v-src kinase rose with decreasing pHi in the range 7.15 to 6.75, whereas junctional permeability of cells containing inactive v-src kinase or no v-src at all was insensitive to pH in that range. Low pH also counteracted the known action of diacylglycerol on junction, but only when pp60v-src kinase was inactive. Immunoblots of whole-cell lysates using an antibody against phosphotyrosine show that phosphorylation on tyrosine of at least one cellular protein, specific for pp60v-src kinase activity, was reduced by low pH but not by TMB-8. These results suggest that TMB-8 does not inhibit v-src action on junctional permeability by interfering with tyrosine phosphorylation of a protein crucial for closure of gap junction channels, but that the inhibition by low pH may be via this mechanism.  相似文献   

11.
We provide direct evidence that serine 17 is the major site of serine phosphorylation in p60v-src, the transforming protein of Rous sarcoma virus, and in its cellular homolog, p60c-src. The amino acid composition of the tryptic peptide containing the major site of serine phosphorylation in p60v-src was deduced by peptide map analysis of the protein labeled biosynthetically with a variety of radioactive amino acids. Manual Edman degradation revealed that the phosphorylated serine in this peptide was the amino terminal residue. These data are consistent only with the phosphorylation of serine 17. The major site of serine phosphorylation in chicken p60c-src, the cellular homolog of p60v-src, is contained in a tryptic peptide identical to that containing serine 17 in p60v-src of Schmidt Ruppin Rous sarcoma virus of subgroup A. Serine 17 is therefore also phosphorylated in p60c-src. The p60v-src protein encoded by Prague Rous sarcoma virus was found to contain two sites of tyrosine phosphorylation. The previously unrecognized site of tyrosine phosphorylation may be tyrosine 205 or possibly tyrosine 208. Treatment of Prague Rous sarcoma virus-infected cells with vanadyl ions stimulated the protein kinase activity of p60v-src and increased the phosphorylation of tyrosine 416 but not the phosphorylation of the additional site of tyrosine phosphorylation.  相似文献   

12.
A novel member of the p62(dok) family of proteins, termed DOKL, is described. DOKL contains features of intracellular signaling molecules, including an N-terminal PH (pleckstrin homology) domain, a central PTB (phosphotyrosine binding) domain, and a C-terminal domain with multiple potential tyrosine phosphorylation sites and proline-rich regions, which might serve as docking sites for SH2- and SH3-containing proteins. The DOKL gene is predominantly expressed in bone marrow, spleen, and lung, although low-level expression of the RNA can also be detected in other tissues. DOKL and p62(dok) bind through their PTB domains to the Abelson tyrosine kinase in a kinase-dependent manner in both yeast and mammalian cells. DOKL is phosphorylated by the Abl tyrosine kinase in vivo. In contrast to p62(dok), DOKL lacks YxxP motifs in the C terminus and does not bind to Ras GTPase-activating protein (RasGAP) upon phosphorylation. Overexpression of DOKL, but not p62(dok), suppresses v-Abl-induced mitogen-activated protein (MAP) kinase activation but has no effect on constitutively activated Ras- and epidermal growth factor-induced MAP kinase activation. The inhibitory effect requires the PTB domain of DOKL. Finally, overexpression of DOKL in NIH 3T3 cells inhibits the transforming activity of v-Abl. These results suggest that DOKL may modulate Abl function.  相似文献   

13.
A 21-residue synthetic peptide corresponding to a part of the noncatalytic domain of p60v-src (residues 137 to 157) was found to inhibit the tyrosine kinase activity of p60v-src. The half inhibition concentration was ca. 7.5 microM. The peptide (peptide A) did not compete with substrate proteins or ATP. Peptide A also inhibited the autophosphorylation of epidermal growth factor receptor/kinase and the tyrosine-specific protein phosphorylation in the acetylcholine receptor-rich membranes isolated from electroplax of Narke japonica. However, serine/threonine-specific protein kinases such as cAMP-dependent and cGMP-dependent protein kinases were not inhibited by peptide A.  相似文献   

14.
In somatic cells, phosphatidylinositol 3-kinase (PI3 kinase) is a critical intermediary in growth factor-induced mitogenesis. We have examined the role of this enzyme in meiotic maturation of Xenopus laevis oocytes. PI3 kinase activity was present in immunoprecipitates of the p85 subunit of PI3 kinase from immature oocytes and markedly increased following progesterone stimulation. Injection of bacterially expressed protein corresponding to the C-terminal SH2 domain of p85 (SH2-C) inhibited progesterone-induced PI3 kinase activation and meiotic maturation. Injection of protein corresponding to the N-terminal SH2 domain or the SH3 domain of p85 did not inhibit PI3 kinase activation or maturation. SH2-C did not inhibit oocyte maturation induced by c-mos RNA injection. In addition, radiolabelled SH2-C was used to probe oocyte lysates, revealing that a novel 200-kDa protein bound to SH2-C. This protein may be an important mediator of progesterone-induced lipid metabolism in oocytes.  相似文献   

15.
The oncogene product of the avian sarcoma virus CT10, P47gag-crk, contains the SH2, SH2', and SH3 domains and binds proteins in a phosphotyrosine (ptyr)-dependent manner. In this study, we have determined the region of P47gag-crk essential for binding to ptyr-containing proteins. Mutant P47gag-crk proteins expressed in Escherichia coli that have the intact SH2 and SH2' regions retained the capacity to bind ptyr-containing proteins obtained from cells transformed by crk and src. The deletion of SH2 resulted in the loss of binding activity. Other mutants that have altered SH2 or SH2' bound few, if any, of the ptyr-containing proteins. Those mutants that bound ptyr-containing proteins associated with tyrosine kinase activity. We also found that polypeptides containing SH2, SH2', and SH3 of p60v-src and p60c-src associated with ptyr-containing proteins from crk-transformed cells. Thus, the SH2 and SH2' domains of P47gag-crk are responsible for their binding to ptyr-containing proteins.  相似文献   

16.
Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation.  相似文献   

17.
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.  相似文献   

18.
Recent studies have shown that ligand-activated growth factor receptors as well as transforming versions of nonreceptor protein-tyrosine kinases physically associate with phosphatidylinositol-3 kinase (PI-3 kinase). Reasoning that PI-3 kinase might also play a role in the normal functions of nonreceptor kinases, we sought to determine whether association with PI-3 kinase might serve as a measure of nonreceptor protein-tyrosine kinase activation under physiological conditions. We found that p60c-src as well as p59fyn, the product of another member of the src family of proto-oncogenes, physically associated with a PI kinase activity within 5 s after exposure to thrombin. Furthermore, PI kinase reaction products generated in p60v-src, p60c-src or p59fyn containing immunoprecipitates were indistinguishable, demonstrating the identity of the associated enzyme as PI-3 kinase. These findings demonstrate a thrombin-dependent interaction between p60c-src or p59fyn and PI-3 kinase and suggest a role for nonreceptor protein-tyrosine kinases in human platelet signal transduction.  相似文献   

19.
Tnk1 is a nonreceptor tyrosine kinase cloned from CD34+/Lin-/CD38- hematopoietic stem/progenitor cells. The cDNA predicts a 72-kDa protein containing an NH(2)-terminal kinase, a Src Homology 3 (SH3) domain, and a proline-rich (PR) tail. We generated rabbit antiserum to a GST-Tnk1(SH3) fusion protein. Affinity-purified anti-Tnk1 antibodies specifically recognized a 72-kDa protein in Tnk1-transfected COS-1 cells and cells which express Tnk1 mRNA. Western blot analysis indicated that Tnk1 is expressed in fetal blood cells, but not in any other hematopoietic tissues examined. Tnk1 immunoprecipitated from cell lysates possessed kinase activity and was tyrosine phosphorylated. In binding experiments with a panel of GST-fusion constructs, only GST-PLC-gamma1(SH3) interacted with in vitro translated Tnk1. GST-protein precipitations from cell lysates confirmed that GST-PLC-gamma1(SH3) associated with endogenously expressed Tnk1. Conversely, GST-Tnk1(PR) protein constructs complexed with endogenously expressed PLC-gamma1. The association of Tnk1 with PLC-gamma1 suggests a role for Tnk1 in phospholipid signal transduction.  相似文献   

20.
Using an immune complex kinase assay to measure pp60c-src kinase activity, we have identified a 56,000 Mr protein (p56) from PC12 cell lysates that co-purified with pp60c-src by strong association with protein-A sepharose beads. The p56 protein was strongly phosphorylated on serine but no tyrosine or threonine phosphorylation was evident. However, pp60c-src was strongly phosphorylated on tyrosine, weakly phosphorylated on serine with no observed threonine phosphorylation. P56 was not a proteolytic breakdown product of pp60c-src, since it was neither tyrosine phosphorylated nor was it recognized by anti-src antibody. P56 was also not recognised by other antibodies to 56kD signalling molecules such as p56lck. The identity of p56 awaits further investigation but its appearance in immunoprecipitates of pp60c-src using protein-A sepharose beads is of interest but complicates the interpretation of results from immune complex kinase assays in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号