首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
近年来的研究表明,Ca2+在植物细胞的信号转导过程中一直起着非常重要的作用。通常,生活细胞内游离钙的浓度保持在30—200nmol/L的范围内, 但来自细胞外或细胞内的各种刺激,则可引起细胞内游离钙浓度的瞬时变化,从而使Ca2+通过不同的信号转导途径,直接或间接地调节细胞生理和生化过程。在植物细胞的生命活动过程中,Ca2+的调节功能表现为多种多样,其中包括离子运输、细胞运动、糖类代谢、细胞分裂、细胞分泌以及基因表达等等。有人研究发现,在植物细胞间隙、细胞壁以及液泡中Ca2+的浓度远高于细胞内游离钙浓度,它们是细胞质…  相似文献   

2.
庞建新  单春文 《生理学报》1996,48(3):293-297
本文将fluo-3和d_i-BA-C4(3)荧光标记的血小板固定于纤维蛋白原表面,以570型粘附式细胞仪(ACAS570)动态观察了凝血酶激活的人单个血小板细胞内游离[Ca~(2+)](钙离子浓度)和膜电位的变化。静息状态时细胞游离[Ca~(2+)]和膜电位荧光较低,波动不明显。当加入0.1U/ml凝血酶激活时,[Ca~(2+)](细胞内游离钙离子浓度)与膜电位迅速升高,随后[Ca~(2+)]出现反复振荡,幅度达约500荧光单位,而膜电位基本上保持峰值水平。[Ca~(2+)]_i升高与膜电位变化在时间和程度上不一致。本文结果提示,凝血酶引起血小板[Ca~(2+)]振荡和膜去极化,后者不是Ca~(2+)内流引起的。  相似文献   

3.
目的在于探讨不同来源的细胞内游离钙([Ca2+]i)对钙调神经磷酸酶(calcineurin,CaN)依赖信号通路和心肌细胞肥大的影响。方法以原代培养的乳鼠心肌细胞为模型,血管紧张素Ⅱ(AngⅡ)、雷尼丁(RY)和三磷酸肌醇(IP3)(浓度均为10-7mol/L)激活心肌细胞[Ca2+]i,应用钙荧光指剂Fura-2/AM动态观测心肌细胞[Ca2+]i浓度,同时检测心肌细胞CaN活性及蛋白表达。用氚-亮氨酸(3H-Leu)掺入量测定心肌细胞蛋白质合成速率。结果发现AngⅡ、RY和IP3明显增加心肌细胞[Ca2+]i浓度、CaN活性及蛋白表达并提高3H-Leu的掺入量,与对照组心肌细胞相比差异显著(P<0.01)。结论激活心肌细胞[Ca2+]i可明显提高心肌细胞蛋白合成速率,心肌细胞CaN活性及蛋白表达似与细胞[Ca2+]i变化有明显关系而与其来源无关,表明CaN信号通路在心肌细胞生长中发挥重要作用。  相似文献   

4.
钙的光释放技术及其在细胞研究中的应用   总被引:2,自引:0,他引:2  
Ca2+的光释放技术通过光解作用使预先引入细胞内的光敏感性螯合剂对Ca2+的亲和性改变,从而实现对细胞内游离钙离子浓度的调控,有助于阐明Ca2+作为第二信使对电兴奋性、肌肉收缩、神经分泌等细胞功能的调制作用.  相似文献   

5.
目的观察Na+/H+交换抑制剂HOE642(Cariporide)对缺氧/再复氧前后未成熟兔心肌细胞内游离钙离子浓度([Ca2+]i)的影响,探讨HOE642对未成熟心肌保护机制。方法6枚新西兰幼兔心脏,用酶解法分离成单个未成熟兔心肌细胞悬液,每份细胞悬液均随机分为基础组、对照组和实验组,基础组未经缺氧直接测量细胞内Ca2+及心肌酶含量(CK、LDH),而后两组均经受缺氧60min,再复氧30min后测量,其中实验组于缺氧时加入HOE642(1μmol/L)。用Flou-3/AM标记,激光扫描共聚焦显微镜测定单个未成熟免心肌细胞内游离钙浓度。另测定三组心肌细胞悬液中心肌酶含量(CK、LDH)。结果缺氧/再复氧后对照组未成熟兔心肌细胞内[Ca2+]i(2814±236/1375±102)及心肌酶漏出量明显高于缺氧前基础值(P<0.01);再复氧后HOE642处理组心肌细胞内[Ca2+]i较缺氧前基础值增加不显著(1446±128/1375±102,P>0.05);而较未用药对照组明显减少(1446±128/2814±236,P<0.01)。而HOE642处理组细胞悬液心肌酶漏出量较基础值有所增加,但其相差不显著,而较对照组有心肌酶漏出量明显减少,两者相差非常显著(P<0.01)。说明HOE642对缺氧/再复氧后未成熟兔心肌细胞内游离钙超载具有明显的抑制作用。结论HOE642对未成熟心肌的保护机制可能是抑制心肌细胞内游离钙超载引起的心肌缺血/再灌注损伤。  相似文献   

6.
硒对NO诱导的内皮细胞内游离钙离子浓度变化的影响   总被引:2,自引:0,他引:2  
用Fura-2显微荧光测钙技术,研究了用外源性一氧化氮(NO)供体S-亚硝基谷胱甘肽(GSNO)诱导的,人脐静脉内皮细胞系ECV-304细胞胞内游离钙离子浓度([Ca2+i )升高以及硒的抑制效应.结果表明,GSNO作用于ECV-304细胞,短时间内即可导致其胞内游离钙离子浓度升高.胞外液换为无钙液或向胞外液中加入CdCl2(1 mmol/L)对GSNO引起的[Ca2+i升高无影响.提示,GSNO刺激主要引起胞内钙库释放.而且,一氧化氮清除剂血红蛋白(Hb)对这一过程有抑制作用,说明GSNO引起的胞内钙库释放由NO介导.经亚硒酸钠(1 μmol/L)处理的细胞,其NO引起的[Ca2+i升高幅度明显被抑制,说明NO的这种作用可能与细胞的氧化还原状态有关.  相似文献   

7.
采用荧光分光光度计法检测维甲酸(RA)、1,25(OH)2VD3及佛波酯(PMA)诱导CCL229细胞分化后[Ca2+]i变化,并观察内质网(ER)特异的Ca2+-ATPase抑制剂Thapsigargin(TG)、IP3受体抑制剂Heparin对RA诱导[Ca2+]i变化的影响,从而探讨RA诱导[Ca2+]i变化与ER的关系。结果显示:RA和1,25(OH)2VD3在数秒内引起[Ca2+]i显著升高。在EGTA和Verapamil预处理细胞条件下,TG不能抑制RA引起Ca2+从细胞内钙池中外流,RA作用后TG仍能升高[Ca2+]i。另外,Heparin也不能完全抑制RA升高[Ca2+]i。提示RA诱导大肠癌细胞升高[Ca2+]i可能通过ER上IP3敏感性和非敏感性钙池,亦可能细胞内存在除ER外对RA敏感的钙池。  相似文献   

8.
采用溴化乙锭(EtBr)诱导线粒体DNA(mitochondrial DNA,mtDNA)拷贝量降低的人支气管上皮细胞株(ρ-HBE);Real—timePCR与共聚焦成像表明,经EtBr诱导60d并挑取的单克隆细胞株,其mtDNA拷贝量下降为正常细胞的24%,成功构建了ρ-HBE。与母本细胞相比,ρ-HBE群体倍增时间延长,生长速度减慢。流式细胞术检测细胞线粒体膜电位(△ψm)下降,以Fura-2标记胞浆内游离钙,ρ-HBE[Ca2+]i升高;线粒体解耦联剂FccP刺激细胞后,激光共聚焦扫描显微镜动态监测单个活细胞[Ca2+]i变化,发现[ca2+]i水平波动幅度小。提示mtDNA拷贝数降低可导致细胞内钙信号调节紊乱。  相似文献   

9.
目的 动态观察低氧(2%O2)对培养的人胚肺成纤维细胞内游离钙离子浓度的影响及肾上腺髓质素预处理对其作用.方法 1、采用体外细胞培养方法,培养并鉴定人胚肺成纤维细胞;2、建立人胚肺成纤维细胞低氧(2%O2)模型;3、采用激光扫描共聚焦显微镜技术动态观测低氧时成纤维细胞内游离钙离子浓度的变化及肾七腺髓质素对其影响.结果 低氧促进成纤维细胞内游离钙离子浓度升高.与常氧组比较,低氧后成纤维细胞内游离钙离子浓度增加,标准荧光值峰值上升了70% (P<0.01).肾上腺髓质素预处理成纤维细胞后,低氧引起的成纤维细胞内游离钙离子浓度升高受到抑制,标准荧光值峰值上升了40%(P<0.01),持续时间缩短了20s.结论 肾上腺髓质索可以抑制低氧引起的人胚肺成纤维细胞内游离钙离子浓度增加,提示这可能是其发挥调节成纤维细胞功能的作用机制之一.  相似文献   

10.
Ca2+作为第二信使参与了植物生长和发育过程的调控,不同生物和非生物胁迫信号均可诱导胞内Ca2+变化.对Ca2+在信号转导作用中的认识主要来自于细胞内Ca2+浓度测定.水母发光蛋白和基于荧光蛋白的Ca2+荧光指示剂作为检测细胞Ca2+信号的手段是近年发展起来的新方法.本文综述了水母发光蛋白和基于荧光蛋白的Ca2+荧光指示剂的发展、测量原理、优点与不足及其在细胞Ca2+信号转导中的应用研究进展.  相似文献   

11.
内皮素对培养心肌细胞内游离钙浓度的作用   总被引:5,自引:0,他引:5  
Wang TH  Wu B  Zhu XN  Pan JY 《生理学报》1999,51(4):391-396
实验用培养新生SD大鼠心室肌细胞,以Fura-2/AM荧光指示剂负载检测收肌细胞内游离钙浓度(「Ca^2+」)的变化,探讨内皮素-1(ET-1)对「Ca^2+」i的作用及其机制。结果显示:ET-1引起心肌细胞「Ca^2+」i升高有两个时相,瞬时相持续相。ET-1诱导的瞬时相「Ca^2+」i升高呈浓度依赖性,预先用ETA特异性受阻断剂BQ123处理,可阻断ET-1引起的「Ca^2+」i升高,揭示上述  相似文献   

12.
Apoptosisorprogrammedcelldeathhasrecentlybeenrecognizedasamodeofcelldeaththatcanbeactivatedinmanysystemsbyavarietyofchemicalandphysicalstimuli.Observationfromseverallaboratoriesindicatedthatmanyanticanceragentscaninduceapoptosisindifferenttypesofcell[…  相似文献   

13.
Stained with Fluo-3/AM and investigated under the laser scanning confocal microscope (LSCM), the spatial-temporal changes of [Ca2+]cyt(the free Ca2+ concentration in the cytoplasm) in the protoplasts of mesophyll cells of wheat (Triticum aestivum L.) cultivars with different cold-hardiness under resting and temperature decreasing conditions were compared. The results showed that under the resting condition, the fluorescence intensities in the protoplasts of both cold-sensitive and cold-resistant wheat manifested no significant changes, implying that [Ca2+]cyt could keep at a stable level under the resting condition although different wheat cultivars were different. However, different dynamics appeared with temperature decreasing from 15℃ to 2℃. In particular, for the cold-resistant wheat, [Ca2+]cyt level at first increased, followed by drop to the resting level at 2℃, and then increased further when the temperature was below 2℃. On the contrary, the [Ca2+]cyt level of the cold-sensitive spring wheat increased continuously to the maximal level within the whole range of temperature changes. Based on the above observations, it could be reasonably inferred that different dynamics of [Ca2+]cyt determines decisively different cold acclimation abilities of plants. Furthermore, the results provide a new supporting evidence for the hypothesis that Ca2+ plays a key role as a primary physiological transducer upon chilling”.  相似文献   

14.
Transmembrane calcium influx induced by ac electric fields.   总被引:2,自引:0,他引:2  
Exogenous electric fields induce cellular responses including redistribution of integral membrane proteins, reorganization of microfilament structures, and changes in intracellular calcium ion concentration ([Ca2+]i). Although increases in [Ca2+]i caused by application of direct current electric fields have been documented, quantitative measurements of the effects of alternating current (ac) electric fields on [Ca2+]i are lacking and the Ca2+ pathways that mediate such effects remain to be identified. Using epifluorescence microscopy, we have examined in a model cell type the [Ca2+]i response to ac electric fields. Application of a 1 or 10 Hz electric field to human hepatoma (Hep3B) cells induces a fourfold increase in [Ca2+]i (from 50 nM to 200 nM) within 30 min of continuous field exposure. Depletion of Ca2+ in the extracellular medium prevents the electric field-induced increase in [Ca2+]i, suggesting that Ca2+ influx across the plasma membrane is responsible for the [Ca2+]i increase. Incubation of cells with the phospholipase C inhibitor U73122 does not inhibit ac electric field-induced increases in [Ca2+]i, suggesting that receptor-regulated release of intracellular Ca2+ is not important for this effect. Treatment of cells with either the stretch-activated cation channel inhibitor GdCl3 or the nonspecific calcium channel blocker CoCl2 partially inhibits the [Ca2+]i increase induced by ac electric fields, and concomitant treatment with both GdCl3 and CoCl2 completely inhibits the field-induced [Ca2+]i increase. Since neither Gd3+ nor Co2+ is efficiently transported across the plasma membrane, these data suggest that the increase in [Ca2+]i induced by ac electric fields depends entirely on Ca2+ influx from the extracellular medium.  相似文献   

15.
Calcium is an important factor in the immune response. Extracellular calcium is required for antibody production by B lymphocytes. Several investigators have demonstrated that crosslinking of receptors on B lymphocytes by anti-mu antibody induces an increase in intracellular calcium. There are few data on the role of intracellular calcium mobilization or calcium influx in tolerance induction in B cells. We studied changes in free intracellular calcium concentration ([Ca+2]i) induced by exposure of dinitrophenyl (DNP)-specific B cells to the tolerance-inducing conjugate DNP-murine IgG2a (DNP-MGG). Splenic B cells enriched for DNP-specific cells and DNP-specific continuous B-cell lines were used for the studies. Exposure of B cells to the tolerogen DNP-MGG, the antigen DNP-keyhole limpet hemocyanin (DNP-KLH), or the antigen DNP-Ficoll induced an increase in free [Ca+2]i which was due to both mobilization of Ca+2 from endoplasmic reticulum (ER) and influx of extracellular Ca+2. This increase was DNP specific since no significant change was seen with carriers alone and no change was seen in cells that were not DNP specific. The DNP-MGG and DNP-Ficoll induced the same amount of Ca+2 release from ER but the release induced by DNP-KLH was higher. When B cells, which were made tolerant by in vitro incubation with DNP-MGG, were incubated with antigens, a mobilization of Ca+2 from endoplasmic reticulum occurred that was the same as that of nontolerant B cells. Since Ca+2 mobilization is associated with Ig receptor-dependent early B-cell activation, it is likely that the tolerant B cell can still receive an activation signal through the Ig receptors.  相似文献   

16.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

17.
Hippocalcin is a neuronal calcium sensor protein that possesses a Ca2+/myristoyl switch allowing it to translocate to membranes. Translocation of hippocalcin in response to increased cytosolic [Ca2+] was examined in HeLa cells expressing hippocalcin-enhanced yellow fluorescent protein (EYFP) to determine the dynamics and Ca2+ affinity of the Ca2+/myristoyl switch in living cells. Ca2+-free hippocalcin was freely diffusible, as shown by photobleaching and use of a photoactivable GFP construct. The translocation was dependent on binding of Ca2+ by EF-hands 2 and 3. Using photolysis of NP-EGTA, the maximal kinetics of translocation was determined (t1/2 = 0.9 s), and this was consistent with a diffusion driven process. Low intensity photolysis of NP-EGTA produced a slow [Ca2+] ramp and revealed that translocation of hippocalcin-EYFP initiated at around 180 nM and was half maximal at 290 nM. Histamine induced a reversible translocation of hippocalcin-EYFP. The data show that hippocalcin is a sensitive Ca2+ sensor capable of responding to increases in intracellular Ca2+ concentration over the narrow dynamic range of 200-800 nM free Ca2+.  相似文献   

18.
钙(Ca2+)是多种信号途径的第二信使。Ca2+成像技术的成熟和发展为显示保卫细胞胞 质Ca2+浓度([Ca2+]cyt)的分布及外界刺激引起[Ca2+]cyt的变化模式提供了很好的研究工具,关于细胞内外Ca2+库释放Ca2+的机制也有了较清楚的认识。拟南芥突变体的研究使Ca2+ 信号上游分子及其排序更加明确,[Ca2+]cyt增加下游的磷酸化和去磷酸化 过程也是气孔关闭必需的生理过程。  相似文献   

19.
Oxidative stress can induce neurotoxic insults by increasing intracellular calcium (Ca2+), which has been implicated in various neurodegenerative diseases in aging. Previously, we showed that hydrogen peroxide induced calcium dysregulation in PC12 cells, as evidenced by (i) an increase in calcium baselines, (ii) a decrease in depolarization-induced calcium influx, and (iii) a failure to recover the Ca2+ levels. In the present experiments, we investigated whether a dietary flavonoid, quercetin, can antagonize the effects of hydrogen peroxide in the same cell model. We also investigated the possible structure-activity relationships of quercetin by comparing the results with four other flavonoids, each having a slightly different structure from quercetin. Our results indicated that two structural components, including (i) 3', 4'-hydroxyl (OH) groups in the B ring and (ii) a 2,3-double bond in conjugation with a 4-oxo group in the C ring, along with the polyphenolic structures were crucial for the protection. These structural components are found in quercetin, and this compound was also the most efficacious in reducing both the H2O2-induced Ca2+ dysregulation in cells and oxidative stress assessed via the dichlorofluorescein assay. Collectively, these data indicated that the particular polyphenolic structural components of quercetin provided its strong antioxidant property of protecting cells against H2O2-induced oxidative stress and calcium dysregulation.  相似文献   

20.
G Cabrini  P De Togni 《Life sciences》1985,36(16):1561-1567
A disorder of calcium homeostasis has been related to the pathogenesis of Cystic Fibrosis (CF). The Authors have studied the relationship between the cytosolic free calcium concentration ([Ca2+]i), the amount of Ca2+ released from endogenous stores and the secretory response in CF neutrophils. Significantly elevated resting [Ca2+]i and depressed Ca2+ release induced by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) is present in CF neutrophils. In the absence of exogenous Ca2+ the secretory response of CF neutrophils after a weak stimulus such as Cytochalasin B (CB) is greater than in normal neutrophils, while a depressed secretion of azurophilic granules is evident in CF neutrophils stimulated by CB + FMLP. The data confirm the hypothesis of an altered Ca2+ homeostasis in CF cells. Cystic Fibrosis (CF), an autosomal recessive exocrinopathy, is characterized by secretory abnormalities and ion transport dysfunctions (for review see 1,2). Since intracellular Ca2+ seems to play a role in stimulus-secretion coupling and ion movements, several aspects of Ca2+ homeostasis have been investigated in CF. The total Ca2+ content has been reported to be increased in fibroblast cultures and in lymphocytes (3,4,5) and mitochondrial Ca2+ uptake was found elevated in fibroblast cultures (6). An elevated free cytosolic calcium concentration ([Ca2+]i) has been recently reported in buccal epithelial cells (7), while normal concentration has been found in lymphocytes and Epstein Barr virus transformed lymphoblasts (5,8). The present paper shows the results of a study in human neutrophils, a cell whose several functions such as secretion, movement and respiratory burst are in some way regulated by Ca2+. The data report that in neutrophils of CF patients the resting [Ca2+]i is higher and the secretory response is partly modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号