首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Platelets were activated with freezing/thawing and thrombin stimulation, and platelet microparticles generated following platelet activation were isolated with ultracentrifugation. The effects of platelet microparticles on platelet activation were studied with annexin V assay, protein tyrosine phosphorylation, and platelet aggregation. Freezing-induced platelet microparticles decreased but thrombin-induced platelet microparticles increased platelet annexin V binding and aggregation. Freshly washed platelets were cryopreserved using epinephrine and dimethyl sulfoxide (Me(2)SO) as combined cryoprotectants, and stimulated with thrombin-induced platelet microparticles. Following incubation of thrombin-induced platelet microparticles, the reaction time of platelets to agonists decreased but the percentages of aggregation increased, such as washed platelets from 44% +/- 30 to 92% +/- 7, p < 0.001, and cryopreserved platelets from 66% +/- 10 to 77% +/- 7, p < 0.02. By increasing platelet aggregability, platelet microparticles recovered after thrombin stimulation improved platelet function for transfusion. A 53-kDa platelet microparticle protein showed little phosphorylation if it was released from resting platelets or platelets stimulated with ADP, epinephrine, propyl gallate or dephosphorylation if it was derived from ionophore A 23187-stimulated platelets. However, the same protein released from frozen platelets showed significant tyrosine phosphorylation. Since a microparticle protein with 53 kDa was compatible with protein tyrosine phosphatase-1B (PTP-1B), its phosphorylation suggests the inhibition of enzyme activity. The microparticle proteins derived from thrombin-stimulated platelets were significantly phosphorylated at 64 kDa and pp60c-src, suggesting that the activation of tyrosine kinases represents a possible mechanism of thrombin-induced platelet microparticles to improve platelet aggregation.  相似文献   

2.
In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.  相似文献   

3.
Activation of human platelets by complement proteins C5b-9 is accompanied by the release of small plasma membrane vesicles (microparticles) that are highly enriched in binding sites for coagulation factor Va and exhibit prothrombinase activity. We have now examined whether assembly of the prothrombinase enzyme complex (factors VaXa) is directly linked to the process of microparticle formation. Gel-filtered platelets were incubated without stirring with various agonists at 37 degrees C, and the functional expression of cell surface receptors on platelets and on shed microparticles was analyzed using specific monoclonal antibodies and fluorescence-gated flow cytometry. In addition to the C5b-9 proteins, thrombin, collagen, and the calcium ionophore A23187 were each found to induce formation of platelet microparticles that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa. These microparticles were enriched in binding sites for factor Va, and their formation paralleled the expression of catalytic surface for the prothrombinase enzyme complex. Little or no microparticle release or prothrombinase activity were observed when platelets were stimulated with epinephrine and ADP, despite exposure of platelet fibrinogen receptors by these agonists. When platelets were exposed to thrombin plus collagen, the shed microparticles contained activated GP IIb-IIIa complexes that bound fibrinogen. By contrast, GP IIb-IIIa incorporated into C5b-9 induced microparticles did not express fibrinogen receptor function. Platelets from a patient with an isolated defect in inducible procoagulant activity (Scott syndrome) were found to be markedly impaired in their capacity to generate microparticles in response to all platelet activators, and this was accompanied by a comparable decrease in the number and function of inducible factor Va receptors. Taken together, these data indicate that the exposure of the platelet factor Va receptor is directly coupled to plasma membrane vesiculation and that this event can be dissociated from other activation-dependent platelet responses. Since a catalytic membrane surface is required for optimal thrombin generation, platelet microparticle formation may play a role in the normal hemostatic response to vascular injury.  相似文献   

4.
BACKGROUND: Microparticles released from platelets may play a role in the normal hemostatic response to vascular injury, because they exhibit prothrombinase activity. Microparticles are generated by high shear stress and may be formed in diseased small arteries and arterioles in various clinical settings. However, the surface composition of high shear-induced platelet microparticles is unknown. It was recently shown that some cytokines modulate platelet activation. However, no reports are available concerning the effect of cytokines on high shear-induced platelet aggregation (SIPA) microparticle generation. MATERIALS AND METHODS: Measurement of SIPA was performed with a cone-plate viscometer. The conformational characteristics of high shear (108 dynes/cm(2))-induced platelet microparticles were analyzed by flow cytometry and confocal laser scanning microscopy. Effects of cytokines for high SIPA microparticle generation were also analyzed using flow cytometry. RESULTS: The overall pattern of monoclonal antibody binding in high shear-induced microparticles was almost the same as that in activated platelets under high shear stress. Microparticles exhibited markedly increased Annexin V binding. In fluorescent confocal images, small and fine regions of fluorescence (microparticles) were recognized separate from platelet fluorescence. Thrombopoietin not only induced platelet activation, as demonstrated by CD62P expression, but also increased the number of microparticles. Erythropoietin and interleukin-6 enhanced only microparticle generation. CONCLUSIONS: These results suggest that microparticles possessing procoagulant activity are released by platelet activation when levels of certain cytokines increase under high shear stress in various clinical settings.  相似文献   

5.
In addition to the well-described role of platelets in thrombosis, a growing body of evidence implicates platelets in diverse inflammatory responses. We recently showed platelets can contribute to the pathophysiology of inflammatory arthritis via IL-1- containing microparticles. In this study, we demonstrate that platelets, and not platelet microparticles, actively contribute to synovitis via production of proinflammatory prostacyclin in an autoimmune arthritis model. Using both genetic and pharmacologic approaches, we establish that paracrine production of prostacyclin proceeds in the absence of cyclooxygenase-2. Furthermore, we also demonstrate that prostacyclin generation can arise via transcellular collaboration between platelets and fibroblast-like synoviocytes. In addition to shedding light on an unappreciated pathway of lipid synthesis in arthritis, we further delineate a novel effector activity by which platelets can contribute to inflammatory disease.  相似文献   

6.
We have shown recently that the calcium-dependent phospholipid-binding protein annexin V (placental anticoagulant protein I) can be used to study the exposure of anionic phospholipid after platelet activation. In this study we have further examined the mechanism of this process. Collagen-induced exposure of annexin V binding sites correlated directly with increased ability to support activity of the reconstituted prothrombinase complex. The potency of annexin V as an inhibitor of platelet prothrombinase was the same as its Kd for platelets. Prior incubation of platelets with 5'-p-fluorosulfonylbenzoyladenosine or p-chloromercuribenzenesulfonate had no significant effect on annexin V binding. Similarly, inhibition of platelet cyclic endoperoxide synthesis by acetylsalicylic acid or indomethacin did not inhibit annexin V binding. Staurosporine inhibited collagen-induced, but not A23187-induced, annexin V binding. Agents that increase intraplatelet cyclic nucleotides partially inhibited collagen-induced annexin V binding. Thus, collagen-induced exposure of anionic phospholipid appears to depend primarily on increases in intraplatelet free calcium and may be independent of ADP- or endoperoxide-mediated pathways. Binding sites for annexin V on microparticles derived from collagen-stimulated platelets were demonstrated by flow cytometry and gel filtration. In addition, prior incubation of platelets with 100 nM annexin V inhibited factor Va binding to both platelets and platelet-derived microparticles. These results support the concept that the procoagulant effect of platelets and platelet-derived microparticles is mediated by calcium-induced exposure of anionic phospholipids.  相似文献   

7.

Background & Aims

Ischemia–reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemic reperfusion, and whether such microparticles have pro-inflammatory, platelet-activating and pro-injurious effects that could contribute to IRI pathogenesis.

Methods

C57BL6 mice underwent 60 min of partial hepatic ischemia followed by 15 min–24 hrs of reperfusion. We collected blood and liver samples, isolated circulating microparticles, and determined protein and lipid content. To establish mechanism for microparticle production, we subjected murine primary hepatocytes to hypoxia-reoxygenation. Because microparticles express everted phosphatidylserine residues that are the target of annexin V, we analyzed the effects of an annexin V-homodimer (Diannexin or ASP8597) on post-ischemia microparticle production and function.

Results

Microparticles were detected in the circulation 15–30 min after post-ischemic reperfusion, and contained markers of SECs, platelets, natural killer T cells, and CD8+ cells; 4 hrs later, they contained markers of macrophages. Microparticles contained F2-isoprostanes, indicating oxidative damage to membrane lipids. Injection of mice with TNF-α increased microparticle formation, whereas Diannexin substantially reduced microparticle release and prevented IRI. Hypoxia-re-oxygenation generated microparticles from primary hepatocytes by processes that involved oxidative stress. Exposing cultured hepatocytes to preparations of microparticles isolated from the circulation during IRI caused injury involving mitochondrial membrane permeability transition. Microparticles also activated platelets and induced neutrophil migration in vitro. The inflammatory properties of microparticles involved activation of NF-κB and JNK, increased expression of E-selectin, P-selectin, ICAM-1 and VCAM-1. All these processes were blocked by coating microparticles with Diannexin.

Conclusions

Following hepatic IRI, microparticles circulate and can be taken up by hepatocytes, where they activate signaling pathways that mediate inflammation and hepatocyte injury. Diannexin prevents microparticle formation and subsequent inflammation.  相似文献   

8.

Background

Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)–bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF.

Methodology/Principal Findings

The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF–expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery.

Conclusions/Significance

By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS.  相似文献   

9.
Activation of platelet caspases by TNF and its consequences for kinetics   总被引:4,自引:0,他引:4  
Piguet PF  Vesin C  Da Kan C 《Cytokine》2002,18(4):222-230
TNF is known to induce a thrombocytopenia, due to a reduced platelet life span. Injection of TNF (10 microg) to mice did markedly increase the number of platelet-derived microparticles in plasma, most pronounced 1h after injection. Injection of TNF induced a transient activation of platelet caspases, -1, -3, -6, -8, -9, as seen by the binding of caspases probes detected by flow cytometry, most pronounced 1h after injection. Activation of caspase-3 was also evidenced by antibodies. Injection of the caspases inhibitor ZVAD-fmk decreased TNF-induced generation of microparticles and thrombocytopenia, indicating a causal role of caspases in platelet fragmentation. Activation of platelet caspases was also evident in platelets exposed to TNF in vitro, indicating that TNF acts on platelets directly. Comparison of platelets from +/+, TNFR1 -/- and TNFR2 -/- mice showed that caspases are activated mainly by the TNFR1. These observations indicate that TNF activates platelet caspases via the TNFR1, which results in platelet fragmentation and thrombocytopenia.  相似文献   

10.
B Dahlb?ck  T Wiedmer  P J Sims 《Biochemistry》1992,31(51):12769-12777
Vitamin K-dependent protein S is an anticoagulant plasma protein serving as cofactor to activated protein C in degradation of coagulation factors Va and VIIIa on membrane surfaces. In addition, it forms a noncovalent complex with complement regulatory protein C4b-binding protein (C4BP), a reaction which inhibits its anticoagulant function. Both forms of protein S have affinity for negatively charged phospholipids, and the purpose of the present study was to elucidate whether they bind to the surface of activated platelets or to platelet-derived microparticles. Binding of protein S to human platelets stimulated with various agonists was examined with FITC-labeled monoclonal antibodies and fluorescence-gated flow cytometry. Protein S was found to bind to membrane microparticles which formed during platelet activation but not to the remnant activated platelets. Binding to microparticles was saturable and maximum binding was seen at approximately 0.4 microM protein S. It was calcium-dependent and reversed after the addition of EDTA. Inhibition experiments with monoclonal antibodies suggested the gamma-carboxyglutamic acid containing module of protein S to be involved in the binding reaction. An intact thrombin-sensitive region of protein S was not required for binding. The protein S-C4BP complex did not bind to microparticles or activated platelets even though it bound to negatively charged phospholipid vesicles. Intact protein S supported binding of both protein C and activated protein C to microparticles. Protein S-dependent binding of protein C/activated protein C was blocked by those monoclonal antibodies against protein S that inhibited its cofactor function. In conclusion, we have found that free protein S binds to platelet-derived microparticles and stimulates binding of protein C/activated protein C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
目的:探讨胃癌患者血浆中组织因子阳性的血小板、白细胞和微粒的数量及其促凝活性。方法:将45例胃癌患者根据TNM分期分为Ⅰ、Ⅱ、Ⅲ、Ⅳ期,同时选取30例健康人作为对照组。采用流式细胞术检测组织因子阳性的细胞和微粒数。凝血酶生成实验检测细胞和微粒的凝血活性。结果:胃癌Ⅲ/Ⅳ期患者血浆中组织因子阳性的血小板、中性粒细胞、单核细胞和微粒的数量明显高于胃癌Ⅰ/Ⅱ期和健康对照组。胃癌Ⅲ/Ⅳ期患者血小板、白细胞和微粒的促凝活性与其他组相比显著升高,与增加凝血酶的生成速度和生成总量有关。用抗组织因子抗体抑制TF后,细胞和微粒的凝血活性明显下降。然而,使用抗膜连蛋白V抑制PS后,细胞和微粒的凝血活性虽然有下降趋势,但是并不明显。此外,根治性手术治疗可以降低组织因子阳性的血小板、中性粒细胞、单核细胞和微粒的数量。结论:组织阳性的血小板、中性粒细胞、单核细胞和微粒是胃癌Ⅲ/Ⅳ患者高凝状态的原因之一,通过抑制TF和凝血酶的生成可能降低胃癌患者的血栓发生率。  相似文献   

12.
Platelets are blood cells without nuclei, which, in conjunction with fibrin, cause bleeding to stop (hemostasis). Cellular microvesicles are microscopic particles released into extracellular space under activation and/or apoptosis of cells of different types. Platelet microvesicles form the main population of blood circulating through microvesicles and play an important role in the reactions of hemostasis, thrombosis, and many other (patho)physiological processes. Despite the large number of studies that have been devoted to the function of platelet microvesicles, the mechanisms of their formation and structural details remain poorly understood. The ultrastructure of the initial platelets and microvesicles formed in vitro from resting cells and platelets activated by arachidonic acid, ADP, thrombin, and calcium ionophore A23187 is investigated in this study. The intracellular origin, stages of formation, structural diversity, and size of microvesicles were analyzed according to the results of transmission electron microscopy of human platelets and isolated microvesicles. It was shown that thrombin, unlike other activators, not only stimulates microvesiculation of the plasma membrane, but also causes decomposition of cells with the formation of subcellular particles that have sizes comparable with the size of the microvesicles from the outer membrane of the cells. Some of these microparticles are cellular organelles surrounded by a thin membrane. The size of isolated microvesicles ranges from 30 to 500 nm, but their size distribution depends on the nature of the activating stimulus. The obtained results contain new data on the formation of platelet microvesicles and their structural diversity, which are important for understanding of their multiple functions in health and disease.  相似文献   

13.
Factor VIII is a cofactor in the tenase enzyme complex which assembles on the membrane of activated platelets. A critical step in tenase assembly is membrane binding of factor VIII. Platelet membrane factor VIII-binding sites were characterized by flow cytometry using either fluorescein maleimide-labeled recombinant factor VIII or a fluorescein-labeled monoclonal antibody against factor VIII. Following activation by thrombin, most platelets bound factor VIII within 90 s. In addition, over the course of several minutes, membranous vesicles (microparticles) were shed from the platelet plasma membrane and each microparticle bound as much factor VIII as a stimulated platelet. Over 30 min, stimulated platelets (but not microparticles) lost the capacity to bind factor VIII. Factor VIII bound saturably to microparticles from platelets stimulated with thrombin, thrombin plus collagen, or the complement proteins C5b-9. The binding of factor VIII was compared to factor V, a structurally homologous coagulation cofactor. Analysis of microparticle binding kinetics yielded similar on and off rates for factor VIII and factor Va and KD values of 2-10 nM. In the presence of 20 nM factor Va, the binding of factor VIII to microparticles was increased, and there was a comparable increase in platelet tenase activity. At higher factor Va concentrations, factor VIII binding and tenase activity were inhibited. Conversely, factor VIII had a similar dose-dependent effect on factor Va binding and platelet prothrombinase activity. Synthetic phospholipid vesicles containing phosphatidylserine competed with microparticles for binding of factor VIII and factor Va. These studies indicate that activated platelets express a transient increase in high affinity receptors for factor VIII, whereas platelet-derived microparticles express a sustained increase in receptors. The binding characteristics of platelet membrane receptors for factor VIII are similar to those for factor Va.  相似文献   

14.

Background

The activation of complement during platelet activation is incompletely understood. Objectives: We sought to explore the formation of C5b-9 and anaphylatoxins binding to collagen-activated platelets.

Methods

C5b-9, anaphylatoxins C3a, C4a and C5a, and anaphylatoxin receptors C3aR1 and C5aR were measured by flow cytometry and/or confocal microscopy. Platelet microparticles were quantified by flow cytometry, and their C5b-9 content was determined by western blot analyses. In all experiments, sodium citrate was used for blood anticoagulation.

Results

C5b-9 rapidly formed on the platelet surface following activation with collagen, TRAP, ADP or A23187, but was surprisingly restricted to a subset of platelets (1 to 15%) independently of P-selectin or phosphatidylserine exposure. Following collagen activation, C5b-9-positive platelets in thrombi were found associated with collagen fibres. C5b-9 formation was obliterated by Mg2+-EGTA and significantly reduced by the thrombin inhibitor hirudin (−37%, p<0.05), but was unaffected by chondroitinase, compstatin, SCH79797 (PAR-1 inhibitor), or in the PRP of a MBL-deficient donor. Compstatin and Mg2+-EGTA, but not hirudin, SCH79797 or chondroitinase, inhibited the formation of collagen-induced microparticles (−71% and −44%, respectively, p<0.04). These microparticles contained greater amounts of C5b-9 compared with the other agonists. Platelet activation by collagen or convulxin resulted in the strong binding of anaphylatoxins and the exposure of receptors C3aR1 and C5aR (CD88) on their surface.

Conclusions

C5b-9 formation on collagen-activated platelets is i) partially controlled by thrombin, ii) restricted to a subset of platelets, and iii) can occur without P-selectin expression or phosphatidylserine exposure. Activated platelets bind anaphylatoxins on their surface and express C3a and C5a receptors, which may contribute to the localization of inflammatory processes during thrombosis.  相似文献   

15.
Cardiovascular disease (CVD) is now the largest killer in western society, and the importance of interactions between vascular endothelium and circulating blood components in disease pathogenesis is well established. Microparticles are a heterogeneous population of <1 μm blood borne particles that arise from blebbing or shedding of cell membranes. The microparticle population includes several classes of apoptotic bodies; however, increased numbers of procoagulant microparticles have been described in plasma from people with CVD. We have previously demonstrated that interactions of monocytes and platelets with isolated inflamed endothelial cells lead to production of pro-coagulant tissue factor bearing microparticles under laminar flow conditions. Here we have investigated microparticle production after perfusion of human whole blood through intact inflamed human umbilical artery. When blood was perfused through umbilical arteries which had been pre-stimulated with tumour necrosis factor (TNFα) for 18 h under flow conditions, there was significantly increased production of microparticles from both platelet and non-platelet sources, in particular from erythrocytes. To determine whether microparticles generated during interactions with inflamed endothelium could induce a pro-inflammatory response in trans, we isolated microparticles by centrifugation after co-culture and incubated with isolated quiescent endothelial cells followed by measurement of reactive oxygen species formation. Microparticles derived from co-culture with inflamed endothelium induced significantly enhanced levels of reactive oxygen species (ROS). These data suggest that presence of an inflamed endothelium causes release of pro-inflammatory microparticles from circulating blood cells, which could contribute to prolonged endothelial activation and subsequent atherosclerotic changes in blood vessels subjected to inflammatory insult.  相似文献   

16.
The role of calcium and intracellular calpains in the expression of platelet prothrombinase activity was investigated. Incubation of gel-filtered platelets with complement proteins C5b-9 resulted in alpha-granule and dense granule secretion and exposure of membrane binding sites for coagulation factors Va and Xa. This was accompanied by the release of microparticles from the cell surface that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa and the alpha-granule membrane protein GMP-140. Generation of these membrane microparticles was dependent on the presence of extracellular calcium and was accompanied by proteolytic degradation of the cytoskeletal proteins, actin binding protein (ABP), talin, and myosin heavy chain. Microparticle formation was also detected when unstirred platelets were activated by thrombin plus collagen, although proteolysis of ABP, talin, or myosin was not observed. Preincorporation of the calpain inhibitor leupeptin into the platelet cytosol completely blocked C5b-9-induced proteolysis of ABP, talin, and myosin. However, inhibition of this calpain-mediated proteolysis had no effect on platelet secretion, the generation of microparticles, the exposure of membrane sites for factors Va and Xa, or the expression of prothrombinase activity. Furthermore, the microparticles that formed in the presence of leupeptin contained intact ABP, talin, and myosin heavy chain. Prior depletion of ATP with metabolic inhibitors eliminated all platelet responses to thrombin plus collagen, but did not affect C5b-9-induced microparticle formation or exposure of binding sites for factor Va on the microparticles. These data indicate that the formation of microparticles and the expression of platelet prothrombinase activity in response to C5b-9 are dependent upon an influx of calcium into the platelet cytosol, but do not require metabolic energy or calpain-mediated proteolysis of cytoskeletal proteins.  相似文献   

17.
Gel-filtrated human platelets were stimulated with thrombin in the absence and presence of adrenaline. Adrenaline markedly enhanced the thrombin-induced increase in cytoplasmic pH (pHi) in BCECF-loaded platelets. This rise in pHi was strongly inhibited by the Na+/H+ exchange blocker EIPA. The potentiation by adrenaline of thrombin-induced PLC activation measured as [32P]PA formation and final platelet responses was, however, not blocked by EIPA, even at low concentrations of thrombin. These results indicate that the enhancement by adrenaline of thrombin-induced cytoplasmic alkalinization may be a secondary effect which is not essential for the potentiation by adrenaline of platelet activation by thrombin.  相似文献   

18.
We have investigated the composition and function of membrane microparticles released from platelets exposed to the C5b-9 proteins of the complement system. Gel-filtered human platelets were incubated with sub-lytic amounts of the purified C5b-9 proteins and the distribution of surface antigens was analyzed using monoclonal antibodies and flow cytometry. C5b-9 assembly caused secretory fusion of the alpha-granule membrane with the plasma membrane and the release of membrane vesicles (approximately 0.1-micron diameter) that contained the plasma membrane glycoproteins (GP) GP Ib and GP IIb-IIIa as well as the alpha-granule membrane protein GMP-140. These microparticles were highly enriched in the C9 neoantigen of the C5b-9 complex. The apparent surface density of C5b-9 on the microparticles was approximately 10(3)-fold higher than on the platelet itself, suggesting that the vesicles were selectively shed from the plasma membrane at the site of C5b-9 insertion. C5b-9 induced the expression of an activation-dependent epitope (recognized by monoclonal antibody, PAC1) in GP IIb-IIIa on the platelet surface but not in GP IIb-IIIa on the microparticles. The surface of the microparticles was also highly enriched in alpha-granule-derived coagulation factor V (or Va), accounting for nearly half of all the membrane-bound factor V detected. The number of potential membrane binding sites for factor Va was probed by adding saturating concentrations of factor Va light chain. Under these conditions, the density of factor Va binding sites on the microparticle surface exceeded that on the C5b-9-treated platelet by three to four orders of magnitude. Moreover, the microparticles provided most of the membrane surface for conversion of prothrombin to thrombin by VaXa. These studies demonstrate that the microparticles shed by C5b-9-treated platelets (and not the platelets themselves) provide the principal binding sites for coagulation factor Va and the principal catalytic surface for the prothrombinase complex. Platelet-derived microparticles formed during complement activation in vivo could provide a membrane surface that facilitates the assembly and dissemination of procoagulant enzyme complexes.  相似文献   

19.
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-poor apolipoprotein A-I (apoA-I) and generates HDL. Here, we demonstrate that ABCA1 also directly mediates the production of apoA-I free microparticles. In baby hamster kidney (BHK) cells and RAW macrophages, ABCA1 expression led to lipid efflux in the absence of apoA-I and released large microparticles devoid of apoB and apoE. We provide evidence that these microparticles are an integral component of the classical cholesterol efflux pathway when apoA-I is present and accounted for approximately 30% of the total cholesterol released to the medium. Furthermore, microparticle release required similar ABCA1 activities as was required for HDL production. For instance, a nucleotide binding domain mutation in ABCA1 (A937V) that impaired HDL generation also abolished microparticle release. Similarly, inhibition of protein kinase A (PKA) prevented the release of both types of particles. Interestingly, physical modulation of membrane dynamics affected HDL and microparticle production, rigidifying the plasma membrane with wheat germ agglutinin inhibited HDL and microparticle release, whereas increasing the fluidity promoted the production of these particles. Given the established role of ABCA1 in expending nonraft or more fluid-like membrane domains, our results suggest that both HDL and microparticle release is favored by a more fluid plasma membrane. We speculate that ABCA1 enhances the dynamic movement of the plasma membrane, which is required for apoA-I lipidation and microparticle formation.  相似文献   

20.
Human platelets exposed to ionomycin, a Ca2+ ionophore, exhibit activation of both phospholipases A2 and C. Such platelets manifest a rise in cytoplasmic Ca2+ (monitored by quin 2), a loss in phosphoinositides, formation of lysophosphatidylinositol, thromboxane B2, phosphatidic acid, and phosphorylated 47 kilodalton protein, and secretion. In the absence of thromboxane formation and secreted ADP, phospholipase C is not activated and the 47 kilodalton protein is not phosphorylated. The elevation in Ca2+ is unaffected by inhibition of cyclooxygenase and ADP. Thus, an increase in cytoplasmic Ca2+ is not sufficient to stimulate phospholipase C. Further, secretion can occur in the absence of phospholipase C activation and 47 kilodalton protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号