首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis was grown in a 12, 8, 4 or 3 h photoperiod to investigate how metabolism and growth adjust to a decreased carbon supply. There was a progressive increase in the rate of starch synthesis, decrease in the rate of starch degradation, decrease of malate and fumarate, decrease of the protein content and decrease of the relative growth rate. Carbohydrate and amino acids levels at the end of the night did not change. Activities of enzymes involved in photosynthesis, starch and sucrose synthesis and inorganic nitrogen assimilation remained high, whereas five of eight enzymes from glycolysis and organic acid metabolism showed a significant decrease of activity on a protein basis. Glutamate dehydrogenase activity increased. In a 2 h photoperiod, the total protein content and most enzyme activities decreased strongly, starch synthesis was inhibited, and sugars and amino acids levels rose at the end of the night and growth was completely inhibited. The rate of starch degradation correlated with the protein content and the relative growth rate across all the photoperiod treatments. It is discussed how a close coordination of starch turnover, the protein content and growth allows Arabidopsis to avoid carbon starvation, even in very short photoperiods.  相似文献   

2.
Carbohydrate levels and activities of enzymes associated with starch, sucrose and sorbitol metabolism were assayed in leaves of peach [ Prunus persica (L.) Batsch cv. Redhaven] of different ages, in order to examine developmental changes in leaf carbohydrate metabolism. Dry matter, soluble protein, chlorophyll and the activities of key enzymes of the reductive pentose phosphate pathway increased during leaf development. The levels of leaf carbohydrates, especially sorbitol and starch, also increased. Changes of starch levels were related to increases in the activities of enzymes associated to starch metabolism, such as ADPglucose-pyrophosphorylase (E.C. 2.7.7.27) and amylase (E.C. 3.2.1.1. plus E.C. 3.2.1.2). The activities of enzymes involved in sucrose and sorbitol degradation decreased during leaf development, whereas the activities of aldose-6-phosphate reductase (E.C. 1.1.1.200) and cytosolic fructase-1,6-bisphosphatase (E.C. 3.1.3.11) increased. In contrast, the activity of sucrose-phosphate synthase (E.C. 2.4.1.14) did not vary in a significant manner. The results suggest that the ability to synthesize and utilize both sucrose and sorbitol changes as peach leaves mature, and also that there are differences in metabolism of these two transport sugars during leaf development.  相似文献   

3.
We found that nontoxic doses of two inhibitors of cholesterol synthesis, namely W-7 and cerulenin, delayed syncytia formation in vero cells infected with measles virus. To correlate syncytia formation and lipidic membrane changes induced by these drugs, we labelled cell lipids with [14C]acetate. Measles virus infection increased the incorporation of radiolabel into fatty acids, triacylglycerol, cholesterol ester, and decreased its incorporation into cholesterol and 1,2-diacylglycerol. The ratios phosphatidylcholine/sphingomyelin and free cholesterol/lanosterol-dihydrolanosterol also decreased during the infection. W-7 and cerulenin greatly altered lipid metabolism. Both decreased the phosphatidylcholine to sphingomyelin and the cholesterol to lanosterol-dihydrolanosterol ratios. Z-D-Phe-L-Phe-L-Gly, a tripeptide which corresponds to the N-terminal sequence of the viral fusion protein (responsible for syncytia formation) and which inhibits virus-induced cell fusion without affecting virus synthesis also perturbed cholesterol metabolism. The tripeptide reversed the phosphatidylcholine to sphingomyelin ratio in infected cells. At non-toxic doses, W-7 inhibited the synthesis of infectious virus. Cerulenin which inhibited strongly the lipid synthesis did not. Finally, the well characterized inhibitors of cholesterol synthesis, mevinolin, ketoconazole and miconazole were shown to inhibit the syncytia formation. We conclude that the inhibition of syncytia by W-7 and cerulenin is associated with their capacity to alter the cholesterol metabolism, whereas the antiviral effect of W-7 does not seem related to this capacity.  相似文献   

4.
Guanylyltransferase and methyltransferases that modify the 5'-terminals of viral mRNA's to form the structures m7G(5')pppAm- and m7G(5')pppGm- appear to be synthesized afte- vaccinia virus infection of HeLa cells. Elevations in these enzyme activities were detected within 1 h after virus inoculation and increased 15- to 30-fold by 4 to 10 h. Increases in the guanylyl- and methyltransferase activities were prevented by cycloheximide, an inhibitor of protein synthesis, but not by cytosine arabinoside, an inhibitor of DNA synthesis. The latter results suggest that the mRNA guanylyl- and methyltransferases are "early" or prereplicative viral gene products. The guanylyltransferase and two methyltransferases, a guanine-7-methyltransferase and nucleoside-2'-methyltransferase, were isolated by column chromatography from infected cell extracts and found to have properties similar or identical to those of the corresponding enzyme previously isolated from vaccinia virus cores. In contrast, enzymes with these properties could not be isolated from uninfected cells.  相似文献   

5.
T-even bacteriophage-tolerant mutants are strains of Escherichia coli which can adsorb T-even phages but cannot support the growth of infective virus. Under some conditions, the infected cells are not killed. Mutant cells infected by phage T6 are able to carry out several metabolic functions associated with normal virus development, including arrest of bacterial nucleic acid and protein synthesis, incorporation of isotopic precursors into viral nucleic acids and proteins, synthesis of early enzymes of deoxyribonucleic acid (DNA) metabolism, formation of rapidly sedimenting DNA intermediates, and formation of normal levels of early and late messenger ribonucleic acid species. Phage are unable to mutate to forms capable of growth on these mutants. The nature of the biochemical alteration leading to tolerance is still unknown.  相似文献   

6.
The effect of low phosphate supply (low P) was determined on the diurnal changes in the rate of carbon export, and on the contents of starch, sucrose, glucose, and fructose 2,6-bisphosphate (F2,6BP) in leaves. Low-P effects on the activities of a number of enzymes involved in starch and sucrose metabolism were also measured. Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers and the low-P treatment induced nutritionally. Low-P treatment decreased carbon export from the leaf much more than it decreased photosynthesis. At growth chamber photon flux density, low P decreased carbon export by 34% in light; in darkness, export rates fell but more so in the control so that the average rate in darkness was higher in low-P leaves. Low P increased starch, sucrose, and glucose contents per leaf area, and decreased F2, 6BP. The total extractable activities of enzymes involved in starch and sucrose synthesis were increased markedly by low P, e.g. adenosine 5-diphosphoglucose pyrophosphorylase, cytoplasmic fructose-1,6-bisphosphatase, uridine 5-diphosphoglucose pyrophosphorylase, and sucrose-phosphate synthase. The activities of some enzymes involved in starch and sucrose breakdown were also increased by low P. We propose that plants adapt to low-P environments by increasing the total activities of several phosphatases and by increasing the concentrations of phosphate-free carbon compounds at the expense of sugar phosphates, thereby conserving Pi. The partitioning of carbon among the various carbon pools in low-P adapted leaves appears to be determined in part by the relative capacities of the enzymes for starch and sucrose metabolism.  相似文献   

7.
Measles virus-directed protein synthesis was examined in two HeLa cell lines (K11 and K11A) that are persistently infected with wild-type measles virus. Four viral proteins (H, hemagglutination protein; P, nucleocapsid-associated protein; NP, the major nucleocapsid protein; and M, the matrix protein) were readily detected in both cell lines by immune precipitation of [(35)S]methionine-labeled cell extracts followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three (H, NP, and M) of the four viral proteins in both K11 and K11A cells differed from the corresponding viral proteins synthesized in HeLa cells acutely infected with the parental wild-type virus. In addition, the M protein from K11A cells migrated significantly more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the M protein from K11 cells, and there appeared to be slight differences in the H and NP proteins between these two persistently infected cell lines. The altered viral proteins detected in K11 and K11A cells appeared to be the result of viral mutations rather than changes in the host cell, since virus recovered from these cells directed the synthesis of similar aberrant viral proteins in HeLa cells. Virus recovered from K11 cells and virus recovered from K11A cells were both temperature sensitive and grew more slowly than wild-type virus. HeLa cells infected with virus recovered from K11 cells readily became persistently infected, resembling the original persistently infected K11 cells. Thus, viral mutations are associated with persistent measles virus infections in cell cultures.  相似文献   

8.
Sunflower chlorotic mottle virus (SuCMoV) causes chlorotic mottling symptoms and important growth reductions and yield losses in sunflower (Helianthus annuus L., cv. Contiflor 7). This paper describes the effects of SuCMoV on some aspects of carbon metabolism of sunflower plants. After symptoms became evident, CO2 fixation rates decreased, nevertheless, soluble sugars and starch increased in infected leaves. High H2O2 accumulation, lipid peroxidation and chlorophyll degradation were, like the other changes, observed only after symptom expression. Increased soluble carbohydrate accumulation was not related to changes in α‐amylase (EC 3.2.1.1) activity, nor in the activities of enzymes associated with sugar import and hydrolysis such as invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13), suggesting it did not derive from starch hydrolysis nor increased sugar import. Rather, it may derive from recycling of cell components associated with the development of oxidative damage. The physiological alterations caused by this virus share many common features with the development of senescence.  相似文献   

9.
10.
Cassava is an important staple crop in sub‐Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin–Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse‐grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement.  相似文献   

11.
The starch content of red algae normally increases during nitrogen limitation. Based on this we hypothesized that nutrient deprivation would result in an increased activity of starch‐synthesizing enzymes and a decrease in the activity of starch‐degrading enzymes, with the opposite scenario when nutrients were sufficient. We therefore examined the effect of the nutrient status of Gracilaria tenuistipitata Chang et Xia on the content of starch and floridoside and on the activity of enzymes involved in the allocation of carbon into starch, floridoside, and agar; floridoside phosphate synthase and α‐galactosidase involved in synthesis and degradation of floridoside; starch synthase and starch phosphorylase involved in the metabolism of starch; uridine 5′‐diphosphate (UDP)‐glucose pyrophosphorylase; adenosine 5′‐diphosphate‐glucose pyrophosphorylase; UDP‐glucose 4‐epimerase; and phosphoglucomutase. During the period of nutrient limitation the starch and floridoside content increased, as did dry weight and C/N ratio, whereas growth rate and protein content decreased. A general decrease in the enzyme activities during nutrient limitation was also observed, indicating a decrease in overall cellular metabolism. The addition of nutrients caused an increase in enzyme activities and a decrease in the contents of starch and floridoside. Of the enzymes examined, only the activity of UDP‐glucose pyrophosphorylase increased during nutrient limitation and decreased abruptly after nutrient addition. This implies a regulatory role for this enzyme in the supply of UDP‐glucose for starch synthesis. It also supports our suggestion that UDP‐glucose is the substrate for starch synthesis in red algae. This assertion is further strengthened by the observation that of the potential starch synthases only the UDP‐glucose starch synthase could support the observed rate of starch synthesis.  相似文献   

12.
13.
Several enzymes of non–photosynthetic sugar phosphate and starch metabolism were measured in gradient–purified chloroplasts from normal rye leaves ( Secale cereale L. cv. Halo) grown at 22°C and in the non-photosynthetic plastids isolated from 70S ribosome-deficient rye leaves grown at a non–permissive elevated temperature of 32°C. Activities of the enzymes phosphoglycerate kinase (EC 2.7.2.3), hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate de-hydrogenase (EC 1.1.1.46), ADPglucose pyrophosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21), and phosphorylase (EC 2.4.1.1) were present in ribosome-deficient plastids from 32°C-grown leaves indicating a cytoplasmic origin of the plastid-specific forms of these enzymes. While the photosynthetic marker enzyme NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) was considerably diminished, both the specific activities and the total activities per leaf of the plastid-specific forms of hexokinase, phosphoglucose isomerase and phosphoglucomutase were markedly increased in the ribosome–deficient plastids, relative to normal chloroplasts. The results demonstrate that after elimination of functional protein synthesis in the chloroplasts the supply of chloroplast–specific enzymes by the cytoplasm is not generally suppressed as observed for many enzymes and proteins involved in photosynthesis, but may even be increased in accord with changed metabolic demands.  相似文献   

14.
15.
The changes of some physiological and biochemical parameters in pumpkin (Cucurbita pepo cv Eskandarani) leaves associated with zucchini yellow mosaic virus (ZYMV) infection and the effect of exogenous application of salicylic acid (SA) were studied in this paper. In comparison to the untreated leaves, ZYMV infected leaves showed many symptoms, including severe mosaic, size reduction, stunting and deformation. Results from analysis of physiological parameters indicated that viral infection and SA treatments affected metabolism. Viral infection decreased pigment, protein and carbohydrate levels. But with all SA treatments, the protein and carbohydrate contents are noticeably increased. Moreover, the other biochemical parameters showed variable alterations. The peroxidase (POX, EC 1.11.1.7) activity and proline contents were induced by both viral infection and SA treatments. In addition, protein patterns represent some newly synthesized polypeptides which reflect formation of pathogenesis related proteins in all treatments. SA treatment increases the plant resistance against ZYMV. This can be noticed through reduction of percentage of the infected plants, decrease in disease severity and virus concentration of the plants treated with SA then inoculated with virus. All results show significant changes in metabolism affected by either viral infection or SA treatments and also indicate that exogenous SA plays an important role in induction of defense mechanism against ZYMV infection.  相似文献   

16.
Infection of the cotyledons of Cucurbita pepo L. with cucumber mosaic virus (CMV) results in the formation of chlorotic, starch-containing lesions. To characterize the physiological changes occurring within lesions, the distribution of the virus was examined by immunolocalization and correlated with starch accumulation, 14CO2 assimilation and chlorophyll a fluorescence quenching. These techniques resolved the lesion into a complex and reproducible arrangement of cell types of diverse physiology. The region of infected cells extended beyond specific circular zones of cells which variously showed enhanced rates of CO2 assimilation, enhanced chlorophyll a fluorescence quenching, starch accumulation, starch degradation and chlorosis. This indicates a series of physiological changes occurring over several days following viral replication within a cell. Starch accumulation in the lesion was shown to result from photosynthetic activity of cells within the lesion and not from the import of photosynthate from surrounding uninfected areas of the cotyledon.  相似文献   

17.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

18.
Monocytes/macrophages are thought to play an important role in pathogenesis of viral infections. These cells are involved in distribution and persistence of viruses in the organism and also influence the regulation of immune reactions. The functional and enzymatic activities of macrophages infected with an agent of hemorrhagic fever with renal syndrome were analyzed for the first time. This disease is caused by a virus of the Hantavirus genus, the Bunyaviridae family. Activities of ectoenzymes 5 -nucleotidase and ATPase of the plasma membrane of the hantavirus-infected macrophages decreased along with the antigen accumulation in the infected cells. The contact of phagocytes with hantavirus resulted in activation in the cells of the oxygen-dependent metabolism and NO-synthase. The NO-synthase-dependent system of the infected macrophages was activated earlier than their oxygen-dependent system. The intracellular contents of acid and alkaline phosphatases increased within the first hours after the infection. The bactericidal activity of the hantavirus-infected macrophages relatively to Staphylococcus aureus increased during the specific antigen accumulation in the phagocytes. Thus, the infection of macrophages with hantavirus was associated with intracellular metabolic changes.  相似文献   

19.
Treatment of HeLa cells with lymphoblastoid interferon leads to a drastic inhibition of infective poliovirus. Even relatively high concentrations of human lymphoblastoid interferon HuIFN-alpha (Ly) (400 IU/ml) do not prevent destruction of the cell monolayer after most of the cells have been infected with poliovirus. Analysis of macromolecular synthesis in a single step growth cycle of poliovirus in interferon-treated cells detected no viral protein synthesis. In spite of this inhibition of viral translation, the shut-off of host protein synthesis in interferon-treated cells is apparent when they are infected both at low and high multiplicities. Although viral RNA synthesis is inhibited considerably in cells treated with interferon, a certain amount is detected, suggesting that some viral replication takes place. Analysis of membrane permeability after poliovirus infection shows a leakage to 86Rb+ ions and modification of membrane permeability to the translation inhibitor hygromycin B at the moment when the bulk of virus protein synthesis occurs. These changes are delayed and even prevented if cells are pretreated with interferon. A situation is described in which host protein synthesis is shut-down with no major changes in membrane permeability, as studied by the two tests mentioned above. Prevention of viral gene expression by inactivation with ultraviolet light of the input virus or by treatment with cycloheximide blocks the shut-off of protein synthesis. This does not occur in the presence of 3 mM guanidine. These observations are in agreement with the idea that some poliovirus protein synthesis takes place in interferon-treated cells and this early gene expression is necessary to block cellular protein synthesis.  相似文献   

20.
The effect of pseudorabies virus on neuronal functions was investigated in PC12 cells. During the period investigated, choline acetyltransferase was not affected, while the acetylcholinesterase activity declined steadily starting at 12 h post infection (p.i.), reaching its minimal level of 40% of the control value at 24 h p.i. In contrast, the activity of tyrosine hydroxylase, the key enzyme in catecholamine synthesis, increased to 150% of the control level by 15 h p.i., dropping off slowly with the appearance of viral cytopathology. In parallel, the infection induced, by a process independent of the extracellular Ca2+, an increased release of dopamine at 11 h p.i., followed by noradrenaline at 20 h p.i. In the infected cells, the intracellular content of catecholamine was maintained only in the presence of a high amount of catecholamine precursors in the culture medium. Three plaque-forming units per cell was the minimal multiplicity of infection required to obtain the maximal changes in enzyme activities; higher multiplicities induced more rapidly the maximal effects on tyrosine hydroxylase and acetylcholinesterase. Inhibition of DNA synthesis did not prevent the increase in tyrosine hydroxylase activity; however, protein synthesis was required. In conclusion, infection of the PC12 cells with pseudorabies virus induced significant changes in catecholaminergic and cholinergic metabolism, indicating the ability of this virus to interfere selectively with specialized neuronal functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号