首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The relationship between intra- and extramitochondrial ATP utilization was investigated in liver mitochondria isolated from normally fed, starved and high-protein fed rats. ATP export was provoked by adding a hexokinase-glucose-trap and intramitochondrial ATP consumption by adding ammonia, bicarbonate and ornithine in order to stimulate citrulline synthesis. Both processes compete for ATP produced via oxidative phosphorylation; the rate of citrulline formation declines as the extramitochondrial [ATP]/[ADP] ratio decreases. It is concluded that ATP for adenine nucleotide translocation and that for carbamoyl phosphate synthesis are delivered from a common intramitochondrial pool of adenine nucleotides. In mitochondria from rats with a high-protein diet, citrulline synthesis greatly stimulates the rate of oxidative phosphorylation (about two thirds of state 3 respiration). Under these conditions the intramitochondrial [ATP]/[ADP] ratio is significantly reduced. The intramitochondrial [ATP]/[ADP] ratio is not in thermodynamic equilibrium with the extramitochondrial one.  相似文献   

2.
The digitonin method for the separation of cytosolic and mitochondrial fractions was applied to liver cells isolated from foetal rats. The cytosolic [ATP]/[ADP] ratio approximately doubles during the last 4 days of gestation, whereas the mitochondrial ratio remains constant. In the presence of oligomycin and added glucose, the cytosolic [ATP]/[ADP] ratio does not increase with age, but is still considerably higher than the mitochondrial ratio. Without added glucose, and when the glycogen content of foetal liver is still very low (more than 3 days before birth), the cytosolic [ATP]/[ADP] ratio in the presence of oligomycin becomes very low and equal to the mitochondrial ratio. It is concluded that the increasein the cytosolic [ATP]/[ADP] ratio during the last 4 days of gestation is solely due to enhanced mitochondrial activity in this period. Atractyloside and bongkrekic acid do not influence the O2 consumption, nor the [ATP]/[ADP] ratios in either compartment of foetal liver cells. Respiration of isolated foetal mitochondria, however, is strongly inhibited by both compounds. The implications of these findings are discussed.  相似文献   

3.
Oscillatory behavior of glycolysis in cell-free extracts of skeletal muscle involves repeated bursts of phosphofructokinase activity and associated oscillations in the [ATP]/[ADP] ratio. Addition of citrate, a potent physiological inhibitor of phosphofructokinase, decreased the frequency of the oscillations and delayed the first burst of phosphofructokinase activity in a dose-dependent manner. Citrate decreased the trigger point [ATP]/[ADP] ratio at which bursts of phosphofructokinase activity were initiated but had a much smaller effect on the average [ATP]/[ADP] ratio and did not decrease the peak values of the ratio. When oscillations were prevented by addition of fructose-2,6-P2, the decrease in the [ATP]/[ADP] ratio caused by citrate in the steady state system was similar to the decrease in the trigger point [ATP]/[ADP] ratio in the oscillatory system. The decrease in the average [ATP]/[ADP] ratio was greater in the steady state system than in the oscillating system. These results demonstrate advantages of oscillatory behavior of glycolysis in the regulation of carbohydrate utilization and the maintenance of a high [ATP]/[ADP] ratio.  相似文献   

4.
When Escherichia coli K-12 was shifted from a medium lacking salt to one containing 0.5 M NaCl, both the [ATP]/[ADP] ratio and negative supercoiling of plasmid DNA increased within a few minutes. After about 10 min both declined, eventually reaching a level slightly above that observed with cells growing exponentially in the absence of salt. Since in vitro the [ATP]/[ADP] ratio influences the level of supercoiling generated by gyrase (H. Westerhoff, M. O'Dea, A. Maxwell, and M. Gellert, Cell Biophys. 12:157-181, 1988), the physiological response of supercoiling to salt shock is most easily explained by the sensitivity of gyrase to changes in the intracellular [ATP]/[ADP] ratio. This raises the possibility that the [ATP]/[ADP] ratio is an important factor in the control of supercoiling.  相似文献   

5.
Shifting Escherichia coli from aerobic to anaerobic growth caused changes in the ratio of [ATP]/[ADP] and in negative supercoiling of chromosomal and plasmid DNA. Shortly after lowering oxygen tension, both [ATP]/[ADP] and supercoiling transiently decreased. Under conditions of exponential anaerobic growth, both were higher than under aerobic conditions. These correlations may reflect an effect of [ATP]/[ADP] on DNA gyrase, since in vitro [ATP]/[ADP] influences the level of plasmid supercoiling attained when gyrase is either introducing or removing supercoils. When the supercoiling activity of gyrase was perturbed by a mutation in gyrB, a shift to anaerobic conditions resulted in plasmid supercoil relaxation similar to that seen with wild-type. However, the low level of supercoiling in the mutant persisted during a time when supercoiling in wild-type recovered and then exceeded aerobic levels. Thus, changes in oxygen tension can alter DNA supercoiling through an effect on gyrase, and correlations exist between changes in supercoiling and changes in the intracellular ratio of [ATP]/[ADP].  相似文献   

6.
Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.  相似文献   

7.
1. Increasing concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a mild respiratory-chain inhibitor [Halestrap (1987) Biochim. Biophys. Acta 927, 280-290], caused progressive inhibition of glucose production from lactate + pyruvate by hepatocytes from starved rats incubated in the presence or absence of oleate and gluconeogenic hormones. 2. No significant changes in tissue ATP content were observed, but there were concomitant decreases in ketone-body output and cytochrome c reduction and increases in NADH fluorescence and the ratios of [lactate]/[pyruvate] and [beta-hydroxybutyrate]/[acetoacetate]. 3. The inhibition by DCMU of palmitoylcarnitine oxidation by isolated liver mitochondria was used to calculate a flux control coefficient of the respiratory chain towards gluconeogenesis. In the presence of 1 mM-oleate, the calculated values were 0.61, 0.39 and 0.25 in the absence of hormone and in the presence of glucagon or phenylephrine respectively, consistent with activation of the respiratory chain in situ as previously suggested [Quinlan & Halestrap (1986) Biochem. J. 236, 789-800]. 4. Cytoplasmic oxaloacetate concentrations were shown to decrease under these conditions, implying inhibition of pyruvate carboxylase. 5. Inhibition of gluconeogenesis from fructose and dihydroxyacetone was also observed with DCMU and was accompanied by an increased output of lactate + pyruvate, suggesting that activation of pyruvate kinase was occurring. With the latter substrate, measurements of tissue ADP and ATP contents showed that DCMU caused a small fall in [ATP]/[ADP] ratio. 6. Two inhibitors of fatty acid oxidation, pent-4-enoate and 2-tetradecylglycidate, were shown to abolish and to decrease respectively the effects of hormones, but not valinomycin, on gluconeogenesis from lactate + pyruvate, without changing tissue ATP content. 7. It is concluded that the hormonal increase in mitochondrial matrix volume stimulates fatty acid oxidation and respiratory-chain activity, allowing stimulation of pyruvate carboxylation and thus gluconeogenesis to occur without major changes in [ATP]/[ADP] or [NADH]/[NAD+] ratios. 8. The high flux control coefficient of the respiratory chain towards gluconeogenesis may account for the hypoglycaemic effect of mild respiratory-chain inhibitors.  相似文献   

8.
In a treatment modeled after the oscillatory behavior of the glycolytic pathway and the purine nucleotide cycle observed in skeletal muscle extracts, it is shown that the basis of the oscillations is the AMP-dependent activation of phosphofructokinase by fructose diphosphate. Control of phosphofructokinase by the adenine nucleotides alone leads to the establishment of a steady state. Whether steady state or oscillatory behavior occurs depends in part on the activity of glyceraldehyde-3-phosphate dehydrogenase, which controls the rate of removal of fructose diphosphate. Under appropriate conditions oscillatory behavior can maintain a higher [ATP]/[ADP] ratio than steady state behavior. Viewed in the context of conditions that may be encountered in skeletal muscle in vivo, oscillatory behavior of glycolysis is shown to have additional advantages for maintaining a high [ATP]/[ADP] ratio.  相似文献   

9.
Summary Cold acclimation in fish is associated with an elevation in metabolic rate. The present study investigates the role of adenine nucleotides and related compounds in metabolic regulation following temperature acclimation. Brook trout (Salvelinus fontinalis) were acclimated for 10 weeks to either +4°C or +24°C. Both groups of fish were exercised at 2.5 body lengths s–1 for 2 weeks prior to sacrifice in order to control for differences in spontaneous activity.Concentrations of ATP, ADP, AMP, P i and PC were approximately 2-fold higher in white than red muscles. Temperature acclimation had little effect on total adenine nucleotide concentration in either muscle type. In white fibres acclimation to 4°C results in a 39% increase in [ADP] and [AMP], a 35% decrease in [PC] (phosphorylcreatine), and no significant change in [P i ]. In contrast temperature has little effect on concentrations of these compounds in red muscle.Parameters of metabolic control — adenylate energy charge ([ATP]+0.5 [ADP]/[ATP]+[ADP]+[AMP]), phosphorylation state ([ATP]/[ADP]·[P i ]), and the ratios [ATP][ADP] and [ATP][AMP] — were significantly lower in cold- than warm-acclimated white muscle. The observed changes in phosphorylation state and [ATP][AMP] are consistent with an increase in mitochondrial respiration and glycolysis, respectively.In conclusion, changes in metabolites may be an important factor in producing an enhanced metabolic rate in cold-acclimated fish.  相似文献   

10.
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨm). A mechanism is described which is suggested to keep ΔΨm at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨm and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨm and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that ‘oxidative stress’ occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.  相似文献   

11.
The relationship between the respiration rate and the intra- and extramito-chondrial adenine nucleotides was investigated in isolated rat liver mitochondria.

For the determination of adenine nucleotide patterns in both compartments a new procedure was developed, based on the evaluation of these metabolites from incubation of various amounts of mitochondria under identical stationary states of oxidative phosphorylation. These identical states were adjusted by addition of appropriate amounts of hexokinase to a glucose-containing incubation mixture.

Adenine nucleotides were measured in aliquots of the total extract of the incubation mixture without any separation. The concentrations of the adenine nucleotides in both compartments were obtained from a plot of the total concentration of these species versus mitochondrial protein. Disturbances of this method by unspecific efflux of adenine nucleotides could be excluded.

The results obtained for the total adenine nucleotide content (12 nmol · mg−1 protein) and the intramitochondrial [ATP]/[ADP] ratio (about 4 in the resting state) are in good agreement with data obtained by other methods.

Strong evidence is provided for a decrease of the intramitochondrial [ATP]/[ADP] ratio with increasing rate of oxygen consumption. Therefore it is not necessary to assume a microcompartmentation of the intramitochondrial adenine nucleotide pool in respect to the ATPase reaction and the adenine nucleotide translocation.  相似文献   


12.
Abstract: Cellular energetic parameters including the intramitochondrial and cytosolic [NAD+]/[NADH] ratios, the cellular [ATP]/[ADP][Pi and [creatine phosphate]/[creatine] ratios, the concentration of cytochrome c and its redox state and the respiratory rate were studied in suspensions of rat brain synapto-somes isolated from nembutal-anesthetized and nonanesthetized animals. The ratio of [3-hydroxybutyrate] to [acetoacetate] was 2.0 in synaptosomes isolated from nonanesthetized rats and 5.55 in those from anesthetized animals. The [lactate]/[pyruvate] ratio was 3.8 in the former and 10.9 in the latter preparation. The [ATP]/[ADP][Pi] was 3838 M−1 in the synaptosomes from anesthetized rats and 840 M−1 in those from nonanesthetized animals and the [creatine phosphate]/[creatine] ratios were 0.79 and 0.39, respectively. Cytochrome c was about 15% reduced in both preparations; however, the mitochon-drial cytochrome concentration was almost twofold higher in the synaptosomes from nonanesthetized animals. Calculations of the free energy relationships between the mitochondrial redox reactions and ATP synthesis showed that in synaptosomes isolated from the brains of nembutal-anesthetized rats the first two sites of oxidative phosphorylation were at near-equilibrium, in agreement with observations for intact cells and tissues. The energetic parameters for synaptosomes from anesthetized rats are very similar to the values for intact whole brain, whereas those for synaptosomes from nonanesthetized rats are lower and suggest that nembutal anesthesia protects against some irreversible damage to the synaptosome during isolation. It is concluded that synaptosomes isolated from brains of nembutal-anesthetized rats can be used as a convenient model system for studies of neuronal metabolism.  相似文献   

13.
The regulation of oxidative phosphorylation was studied with digitonin-treated epididymal bull spermatozoa in which mitochondria are directly accessible to low molecular compounds in the extracellular medium. Due to the high extramitochondrial ATPase activity in this cell preparation, it was possible to stimulate respiration to a small extent only by added hexokinase in the presence of glucose and adenine nucleotides. Added pyruvate kinase plus phosphoenol pyruvate, however, strongly suppressed the respiration. Under these conditions, the respiration was found to depend on the extramitochondrial [ATP]/[ADP] ratio in the range of 1-100. The contribution of the adenine nucleotide translocator to this dependence was determined by titration with the irreversible inhibitor carboxyatractyloside in the presence of ADP. Using lactate plus malate as substrate, the active state respiration was controlled to about 30% by the translocator, whereas 12 and 4% were determined in the presence of L-glycerol-3-phosphate and malate alone, respectively. In order to compare the results with those for intact cells, the adenine nucleotide patterns were determined in intact and digitonin-treated spermatozoa under conditions of controlled respiration in the presence of vanadate and carboxyatractyloside, respectively. About 21% of total cellular adenine nucleotides were found in digitonin-treated cells representing the mitochondrial compartment. While allowing for the intramitochondrial amount of adenine nucleotides, the cytosolic [ATP]/[ADP] ratio was estimated to be 6-times higher than the mitochondrial ratio in intact cells. It is concluded from the data presented that the principal mechanism by which oxidative phosphorylation in sperm mitochondria is regulated via the extramitochondrial [ATP]/[ADP] ratio is the same as that demonstrated for other isolated mitochondria.  相似文献   

14.
1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA.  相似文献   

15.
1. The ratio [ATP]/[ADP][P(i)], as measured by direct determination of the three components in rat liver, was found in various nutritional states to have approximately the same value as the ratio [ATP]/[ADP][P(i)] calculated from the concentrations of lactate, pyruvate, glyceraldehyde phosphate and 3-phosphoglycerate on the assumption that lactate dehydrogenase, glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase are at near-equilibrium in the liver. This implies that the redox state of the NAD couple in the cytoplasm is linked to, and partially controlled by, the phosphorylation state of the adenine nucleotides. 2. The combined equilibrium constant of the glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate kinase reactions at 38 degrees C and I0.25, was found to be 5.9x10(-6). 3. The fall of the [NAD(+)]/[NADH] ratio in starvation and other situations is taken to be the consequence of a primary fall of the [ATP]/[ADP][HPO(4) (2-)] ratio.  相似文献   

16.
Determination of the adenine and guanine nucleotides in Triton X-100-extracted cytoskeletal fractions was utilized to estimate the actin and tubulin content of the assembled cytoskeletons in nonmuscle cells. Results with stable cell lines (i.e., rat pheochromocytoma PC12 and neuroblastoma NB41A3) and with primary cultures (i.e., human foreskin fibroblasts and chick embryonic dorsal root ganglion neurons) exhibited levels of cytoskeletal fraction ADP and GDP consistent with their assembly-induced nucleoside-5'-triphosphatase activities only previously analyzed in vitro. Likewise, estimates of actin and tubulin content fall in the range of values obtained by other experimental approaches. In contrast, analysis of whole cell nucleotides showed high [ATP]/[ADP] and [GTP]/[GDP] ratios, suggesting there is little, if any, contamination of the cytoskeletal nucleotide pool by other cellular nucleotides.  相似文献   

17.
1. Examination of the distribution of L-tri-iodothyronine among rat liver tissue fractions after its intravenous injection into thyroidectomized rats focused attention on mitochondria at very short times after administration. By 15 min this fraction contained 18.5% of the tissue pool; however, the content had decreased sharply by 60 min and even further over the next 3 h. By contrast, the content in all other fractions was constant or increased over 4 h. About 60% of tissue hormone was bound to soluble protein. 2. Mitochondria isolated from thyroidectomized rats showed P/O ratios that were about 50% of those found in normal controls, with both succinate and pyruvate plus malate as substrates. There was no evidence of uncoupling; the respiratory-control ratio was about 6. 3. Mitochondria isolated 15 min after injection of tri-iodothyronine into thyroidectomized rats showed P/O ratios and respiratory-control ratios that were indistinguishable from those obtained in mitochondria from euthyroid animals. The oxidation rate was, however, not restored. 4. Incubation of homogenates of livers taken from thyroidectomized animals injected with L-tri-iodothyronine before isolation of the mitochondria restored the P/O ratio to normal; by contrast, direct addition of hormone to isolated mitochondria had no effect. The role of extramitochondrial factors in rapid tri-iodothyronine action is discussed. 5. Possible mechanisms by which tri-iodothyronine might rapidly alter phosphorylation efficiency are considered: it is concluded that control of adenine nucleotide translocase is unlikely to be involved. 6. The amounts of adenine nucleotides in liver were measured both after thyroidectomy and 15 min after intravenous tri-iodo-thyronine administration to thyroidectomized animals. The concentrations found are consistent with a decreased phosphorylation efficiency in thyroidectomized animals. Tri-iodothyronine injection resulted in very significant changes in the amounts of ATP, ADP and AMP, and in the [ATP]/[ADP] ratio, consonant with those expected from an increased efficiency of ADP phosphorylation. This suggests that the changes seen in isolated mitochondria may indeed reflect a rapid response of liver in vivo to tri-iodo-thyronine.  相似文献   

18.
Using 31P NMR spectroscopy, we have measured the rate of ATP synthesis, and the free concentrations of ATP, ADP, cytoplasmic Pi, and H+ in maize root tips under a wide range of conditions. We show that the ratio [ATP]/[ADP] in normoxic root tips is greater than 25. We found no simple relationship between the concentration of ATP and the rate of ATP synthesis: when the rate of ATP synthesis decreases in response to different treatments, the concentration of ATP can increase, decrease, or remain unchanged. Clear relationships were obtained, however, when the rate of synthesis of ATP was plotted against the logarithm of the ratio psi, defined as [ATP]/[ADP][Pi][H+]. Two curves were obtained, depending on which of two situations pertained. First, if mitochondrial ATP synthesis was inhibited, e.g., by KCN or hypoxia, ln psi decreased monotonically as rates of ATP synthesis decreased. The decrease in ln psi may account for decreases in the rates of biosynthetic reactions dependent on ATP, such as protein synthesis, as they approach equilibrium. Second, if consumption of ATP for biosynthetic reactions was inhibited, by treatment with succinate, ln psi increased as rates of ATP synthesis decreased. The increase in ln psi may account for decreases in the rate of ATP synthesis, as oxidative phosphorylation approaches equilibrium.  相似文献   

19.
1. Measurements of ATP, ADP and AMP concentrations in livers of rats that had been delivered by Caesarian section indicate a rapid shift from a low to a high [ATP]/[AMP] ratio. This change is consistent with the cessation of glycolysis and the initiation of gluconeogenesis at birth. 2. When newborn animals are exposed to a 100% nitrogen atmosphere the hepatic ATP concentration falls and AMP increases. 3. Calculations of the [ATP][AMP]/[ADP](2) ratio give values that are close to the equilibrium constant of adenylate kinase except when the ATP concentration is high. 4. This difference cannot be accounted for by the preferential binding of available Mg(2+) to ATP(4-) rather than ADP(3-). It is concluded that the relative proportions of adenine nucleotides at any level of phosphorylation are only partly regulated by adenylate kinase.  相似文献   

20.
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号