首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Tetrahymena pyriformis the phagocytotic rate increases in response to histamine, but neither the H1 antagonist phenindamine nor the H2 antagonist metiamide stimulate phagocytosis. The H1 antagonist counteracts the effect of histamine, whereas the H2 antagonist does not. The histamine receptor of Tetrahymena is of H1-type, since it cannot distinguish between histamine and antagonists which are closely related to it chemically. It does, however, distinguish between histamine and the chemically unrelated H1 antagonist, phenindamine. The H2 antagonist does not interact with the receptor.  相似文献   

2.
Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.  相似文献   

3.
Demonstration of histamine H2 receptors on human melanoma cells   总被引:1,自引:0,他引:1  
Histamine induced a concentration-dependent increase in intracellular cyclic-AMP of the two human melanoma cell lines SK23 and DX3.LT5.1; maximal stimulation was obtained with 17.8 microM histamine which consistently produced greater than 50-fold increases in the cyclic AMP content of both cell lines. The dose-response curve for histamine in each culture was progressively displaced to the right with increasing concentrations of the histamine H2 receptor antagonist cimetidine. Ranitidine, another H2 receptor antagonist also prevented the histamine-induced cyclic AMP elevation, but the H1 receptor antagonists mepyramine and tripelennamine had no significant effect. These findings indicate that human melanoma cells express histamine H2 receptors, stimulation of which activates adenylate cyclase with a subsequent rise in intracellular cyclic AMP. Mast cell:melanoma interactions mediated by histamine in vivo might therefore be expected to modify some aspects of melanoma cell behaviour.  相似文献   

4.
We utilized the technique of polymerase chain reaction with oligonucleotide primers based upon the nucleotide sequence of the canine H2 histamine receptor gene which we recently isolated to clone its human homologue. Transfection of a construct of this gene in Colo-320 DM cells led to the expression of a receptor that bound to [methyl-3H] tiotidine and was linked to 3',5'cyclic adenosine monophosphate (cAMP) generation in response to histamine. Both cAMP generation and [methyl-3H] tiotidine binding were inhibited with the H2 histamine receptor selective antagonist cimetidine but not diphenhydramine or thioperamide which are, respectively, H1 and H3 histamine receptor antagonists. These data confirm that we have successfully cloned a novel gene encoding the human H2 histamine receptor.  相似文献   

5.
INTRODUCTION: The neuroendocrine histamine-secreting cell of the gastric fundus, the enferochromaffin-like cell, is the principal regulator of parietal cell acid secretion. We have proposed that histamine may regulate its own synthesis and release via an autocrine mechanism. The purpose of this study was to evaluate the role of the histamine receptor subtypes H1, H2 and H3 in the regulation of this phenomenon. METHODS: Purified ECL cells were isolated by pronase digestion and EDTA exposure of the rat stomach, followed by particle size and density separation using counterflow elutriation and Nycodenz gradient centrifugation, 24-hr cultured cells were pretreated for 30 min with the agents; H1 receptor agonist (2-[(3-trimethyl)-diphenyl] histamine) (TMPH), H1 receptor antagonist (terfenadine); H2 receptor agonist (dimaprit) or antagonist (cimetidine or loxitidine); or H3 receptor agonist (imetit) or antagonist (thioperamide) (all tested, 10(-10)-10(-6) M). Gastrin was then used to stimulate histamine secretion. Histamine secretion was quantified by specific enzyme-immunoassay. RESULTS: Basal histamine secretion was 2.7 +/- 0.14 nmol/10(3) cells. Gastrin-stimulated (10 nM) levels were 4.6 +/- 0.4 nmol/10(3) cells (p < .01). TMPH inhibited both basal and gastrin driven histamine secretion with a maximal effect (34 percent) (1.78 +/- 0.08 nmol/10(3) cells) and an IC50 of > 5 x 10(-7) M. H1 receptor antagonism did not alter histamine secretion alone or in combination with gastrin. Neither H2 receptor stimulation nor antagonism had any effect on histamine secretion alone or in combination with gastrin. Gastrin-induced histamine secretion was dose-dependently inhibited by imetit (H3 agonist) with a maximal effect (2.4 +/- 0.6 nmol/10(3) cells) (p < .05) and an IC50 of 10(-9) M. Conversely, Thioperamide (H3 antagonist) dose-dependently augmented gastrin-stimulated histamine secretion with a maximum effect (5.7 +/- 0.5 nmol/10(3) cells) (p < .05) at 10(-8) M and an EC50 of 7 x 10(-10) M. CONCLUSION: These data are consistent with the presence of an H3 receptor on the ECL cell which modulates gastrin-stimulated histamine secretion. Our observations support the proposal that a histamine-mediated short-loop autocrine regulatory mechanism of ECL cell secretion exists.  相似文献   

6.
The study was designed to determine the cardiovascular effects of histamine administered intracerebroventricularly (icv) in a rat model of volume-controlled haemorrhagic shock. The withdrawal of approximately 50% of total blood volume resulted in the death of all control saline icv treated animals within 30 min. Icv injection of histamine produced a prompt dose-dependent (0.1-100 nmol) and long-lasting (10-100 nmol) increase in mean arterial pressure (MAP), pulse pressure (PP) and heart rate (HR), with a 100% survival of 2h after treatment (100 nmol). The increase in MAP and HR after histamine administration in bled rats in comparison to the normovolaemic animals was 2.7-3.3- and 1.3-3.6-fold higher, respectively. Pretreatment with chlorpheniramine (50 nmol icv), H1 receptor antagonist, inhibited the increase in MAP, PP, HR and survival rate produced by histamine, while chlorpheniramine given alone had no effect. Neither ranitidine (50 nmol icv), H2 histamine receptor antagonist, nor thioperamide (50 nmol icv), H3 receptor blocker, influenced the histamine action, however, when given alone, both evoked the pressor effect with elongation of survival time. It can be concluded that histamine administered icv reverses the haemorrhagic shock conditions, and histamine H1 receptors are involved.  相似文献   

7.
L B Hough  S D Glick  K Su 《Life sciences》1985,36(9):859-866
Scrambled DC current applied to the hind paws of rats caused an analgesic response that was inhibited by the histamine H2-receptor antagonists cimetidine, ranitidine and oxmetidine, but not by high doses of naloxone (the opiate antagonist), or other transmitter receptor antagonists. In contrast, AC current applied to all paws produced analgesia that was blocked by naloxone, but not cimetidine, showing the independence of these systems. These findings indicate a specific role for histamine and H2-receptors as mediators of endogenous non-opiate analgesia. In addition, a combination of cimetidine and naloxone did not abolish either form of footshock analgesia, implying the existence of a non-opiate, non-H2, endogenous pain-relieving system. These results also suggest that drugs capable of penetrating the brain and stimulating H2-receptors might have analgesic properties.  相似文献   

8.
This letter describes the discovery and synthesis of a series of octahydropyrrolo[3,4-c]pyrrole based selective histamine hH4 receptor antagonists. The amidine compound 20 was found to be a potent and selective histamine H4 receptor antagonist with moderate clearance and a high volume of distribution.  相似文献   

9.
This report discloses the development of a series of tricyclic histamine H(4) receptor antagonists. Starting with a low nanomolar benzofuranopyrimidine HTS hit devoid of pharmaceutically acceptable properties, we navigated issues with metabolism and solubility to furnish a potent, stable and water soluble tricyclic histamine H(4) receptor antagonist with desirable physiochemical parameters which demonstrated efficacy a mouse ova model.  相似文献   

10.
Effects of histamine on bronchial artery blood flow and bronchomotor tone   总被引:5,自引:0,他引:5  
The effects of aerosolized 5% histamine (10 breaths) on bronchial artery blood flow (Qbr), airflow resistance (RL), and pulmonary and systemic hemodynamics were studied in mechanically ventilated sheep anesthetized with pentobarbital sodium. Histamine increased mean Qbr and RL to 252 +/- 45 and 337 +/- 53% of base line, respectively. This effect was significantly different from base line for 30 min after challenge. The histamine-induced increase in RL was blocked by pretreatment with the histamine H1 receptor antagonist, chlorpheniramine, whereas the histamine-induced elevation in Qbr was prevented by the H2 antagonist, metiamide. Both responses were blocked only when both antagonists were present. Changes in Qbr were not directly associated with alterations in systemic and pulmonary hemodynamics or arterial blood gas composition. In vitro histamine caused a dose-dependent contraction of ovine bronchial artery strips that was prevented by H1 antagonist. The H2 agonist, impromidine, caused relaxation of precontracted arterial strips and was more potent and efficacious than histamine, whereas H1 agonists failed to elicit a relaxant response. Thus these findings indicate that histamine aerosol induces a vasodilation in the bronchial vascular bed; histamine has a direct effect on Qbr that is independent of alterations in RL, systemic and pulmonary hemodynamics, or arterial blood gas composition; and, histamine-induced bronchoconstriction is mediated predominantly by H1-receptors, whereas increased Qbr is controlled predominantly by H2-receptors, probably located in resistance vessels. This local effect of histamine on Qbr may have important implications in the pathophysiology of bronchial asthma and pulmonary edema.  相似文献   

11.
The purpose of this study was to examine the effects of thioperamide, a histamine H3 antagonist, on the locomotor activity and the brain histamine content in mast-cell-deficient W/Wv mice. Thioperamide (12.5 and 25 mg/kg) showed significant increase in the locomotor activity of W/Wv mice, measured by a photo-beam system, 1 hr after the intraperitoneal injection. However, more than 75 mg/kg of thioperamide showed not only the reduction of the locomotor activity but also the inhibition of motor coordination measured by the rotarod performance. The increase in the locomotor activity by thioperamide was blocked by i. p. pretreatment with (R)-alpha-methyl-histamine, an H3 agonist, or pyrilamine, an H1 antagonist, or zolantidine, an H2 antagonist. The brain histamine content was decreased by thioperamide (12.5-75.0 mg/kg), 1 hr after administration. Thus, the blockade of histamine H3 receptor by thioperamide showed the activation of locomotor activity of mice, which may be mediated by H1 and/or H2 receptors. The present data support the hypothesis that central histaminergic neurons may be involved in the control of state of wakefulness.  相似文献   

12.
The effect of histamine type 2 (H2) receptor antagonists, cimetidine and ranitidine, on the induction and expression of hapten-specific suppressor T cells was studied. The activity of DNBSO3 -induced suppressor cells was evaluated after adoptive transfer to naive syngeneic recipients. Treatment with cimetidine or ranitidine markedly inhibited suppressor T cell activity in a dose-related manner and enhanced the contact sensitivity response to DNFB. Both H2 antagonists were effective in inhibiting the expression and, to a lesser extent, the induction of suppressor T cells. In contrast, norburimamide , a non-H2 antagonist structurally related to cimetidine, was inactive. The relevance of these findings to the clinical observation of cimetidine-induced reversal of acquired tolerance to dinitrochlorobenzene in anergic patients is discussed.  相似文献   

13.
Histamine membrane receptors are defined as either H1 (blocked by diphenhydramine-like antagonists) or H2 (blocked by cimetidine-like agents). We now report the solubilization, separation, and partial characterization of specific H1 and H2 membrane receptors from calf thymocytes. Membrane fragments were incubated with [3H]histamine either alone or with unlabeled histamine, diphenhydramine, or cimetidine. Maximal specific binding occurred with incubation at 37 degrees C for 2 h at a concentration of 5 x 10(-6) M [3H]histamine. Labeled receptors were solubilized from membranes with 0.3 M KCl and 1% Nonidet 40. Chromatography of the solubilized labeled receptors on ion exchange columns revealed two classes of receptor. One class bound to DEAE-cellulose and eluted as a sharp peak at 0.15 M NaCl/Pi. The other bound to phosphocellulose and eluted as a sharp peak at 0.55 M NaCl/Pi. Initial incubation of the membranes in the presence of the H1 receptor antagonist diphenhydramine virtually abolished the DEAE-cellulose peak, while incubation with cimetidine, the H2 receptor antagonist, blocked the phosphocellulose peak. We conclude that H1 and H2 histamine receptors are physically separable and can be defined by their ability to bind to either DEAE-cellulose or phosphocellulose.  相似文献   

14.
We undertook these studies to characterize the molecular basis of the interaction of histamine with the H2 receptor. Key areas of homology in the structures of the histamine H2 and beta 2 adrenergic receptor suggested specific transmembrane amino acids that might be important for binding of histamine. A third transmembrane aspartic acid of the histamine receptor (Asp98), thought to serve as a counter anion that interacts with the cationic amine moiety of histamine, was mutated to Asn98, and the mutated receptor was expressed in Hepa cells. Removal of the negatively charged amino acid abolished both binding of the H2 receptor antagonist [methyl-3H]tiotidine and histamine stimulated increases in cellular cAMP content. Mutation of a fifth transmembrane aspartic acid (Asp186) to Ala186 or Asn186 by itself or in conjunction with mutation of another fifth transmembrane amino acid (Thr190 to Ala190) resulted in a loss of [methyl-3H] tiotidine binding, although the generation of cAMP in response to histamine was maintained. The histamine receptor with only a Thr190 to Ala190 or Cys190 mutation retained the ability to bind [methyl-3H]tiotidine, but both the affinity and efficacy of binding were reduced. These data lead us to propose a model for histamine binding in which Asp98 is essential for histamine binding and action, Asp186 defines H2 selectivity, and Thr190 is important in establishing the kinetics of histamine binding, but is not essential for H2 selectivity.  相似文献   

15.
Certain chemical properties, which may determine the biological actions of the recently discovered histamine H2-receptor antagonists burimamide and metiamide, are identified, partly by considering the derivation of these antagonists. Examples are given of attempts to design antagonists using histamine as starting point. A partial agonist was eventually obtained through modifying the side chain of histamine but retaining the imidazole ring. Further developments led to the synthesis of uncharged thioureido analogues and to the discovery of the antagonist, burimamide. Consideration of the relative concentration of imidazole tautomers led to the replacement of a methylene group (-CH2-) with an isosteric thioether (-S-) link in the side chain, and incorporation of a methyl group in the imidazole ring; these changes afforded metiamide, an orally active antagonist. These developments emphasize that the imidazole ring appears to have a special importance at H2 receptors. Burimamide and metiamide are hydrophilic molecules that resemble histamine in having an imidazole ring but differ in the side chain which, though polar, is uncharged. By contrast, the H1-receptor antihistaminic drugs are lipophilic molecules; their resemblance to histamine is in having a positively charged ammonium side chain. These substantial chemical differences between the respective antagonists probably determine their selectivity in distinguishing between the two types of histamine receptor. Furthermore, the very low lipophilicities of these H2-receptor antagonists probably account for the lack of central nervous system and local anesthetic effects normally associated with the use of antihistaminic drugs.  相似文献   

16.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

17.
The in vitro effect of histamine and its antagonists, cimetidine and clemastine fumarate, on natural killer (NK) and antibody-dependent cellular Cytotoxicity (ADCC) activities of human lymphocytes was investigated. The histamine 1 (H1) antagonist, clemastine fumarate, and the histamine 2 (H2) antagonist, cimetidine, but not histamine alone, inhibited the NK and ADCC activities of lymphocytes when added directly to the mixture of effector and target cells in a 51Cr-release assay. This inhibition was proportional to the concentration of drugs added and was observed at various effector to target ratios against several targets. H1 and H2 antagonists also inhibited NK activities of T cells as well as Percoll-separated, NK-enriched effector cells. The inhibition was significantly reversed by histamine. In target binding assays, clemastine fumarate and cimetidine also decreased the target binding capacity of effector lymphocytes. Further, PBL precultured with histamine (10?3–10?4M) for 24 hr showed a significant decrease in their NK and ADCC activities. In coculture experiments, PBL precultured with histamine suppressed the NK activity of normal autologous effector lymphocytes. PBL precultured with histamine showed an increased number of OKT8+ cells, as estimated using monoclonal antibodies. The suppression of Cytotoxicity was not due to either direct toxicity, steric hindrance, crowding, or cell death, but by functionally viable suppressor cells. An immunoregulatory role for histamine in NK and ADCC reactions is proposed.  相似文献   

18.
The ability of the histamine type 2 (H2) receptor antagonists cimetidine and oxmetidine to inhibit the immune suppression mediated by different types of murine T suppressor cells has been evaluated. Both compounds at doses as low as 1 mg/kg administered as a per os (p.o.) twice a day (b.i.d.) regimen abrogated the expression of dinitrobenzene sulfonic acid-induced, Lyt-2+, T suppressor cells and stimulated contact sensitivity to dinitrofluorobenzene in adoptive transfer experiments. Comparable inhibition of Lyt-1+, T suppressor cell activity induced by UV irradiation required higher doses of cimetidine and oxmetidine (200 and 25 mg/kg; p.o., b.i.d., respectively). In contrast, the T suppressor cell-mediated unresponsiveness induced by inoculation with a high dose of sheep red blood cells was refractory to treatment in vivo with either cimetidine or oxmetidine regardless of the dose. These results indicate that T suppressor cell populations differ markedly in their susceptibility to modulation by H2 antagonists. The histamine type 1 (H1) receptor antagonist diphenhydramine, had no effect on suppressor cell activity in any of these systems, indicating that modulation of suppressor cell activity is mediated through an H2 receptor interaction.  相似文献   

19.
Brain‐derived neurotrophic factor (BDNF), corticotropin‐releasing factor (CRF), and hypothalamic neuronal histamine are anorexigenic substances within the hypothalamus. This study examined the interactions among BDNF, CRF, and histamine during the regulation of feeding behavior in rodents. Food intake was measured after treatment with BDNF, α‐fluoromethyl histidine (FMH; a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine), or CRF antagonist. We measured food intake in wild‐type mice and mice with targeted disruption of the histamine H1 receptor (H1KO mice) after central BDNF infusion. Furthermore, we investigated CRF content and histamine turnover in the hypothalamus after BDNF treatment, and conversely, BDNF content in the hypothalamus after histamine treatment. We used immunohistochemical staining for histamine H1 receptors (H1‐R) in BDNF neurons. BDNF‐induced feeding suppression was partially attenuated in rats pre‐treated with FMH or a CRF antagonist, and in H1KO mice. BDNF treatment increased CRF content and histamine turnover in the hypothalamus. Histamine increased BDNF content in the hypothalamus. Immunohistochemical analysis revealed that H1‐Rs were expressed on BDNF neurons in the ventromedial nucleus of the hypothalamus. These results indicate that CRF and hypothalamic neuronal histamine mediate the suppressive effects of BDNF on feeding behavior and body weight.  相似文献   

20.
The formation of lung metastases by i.v.-injected B16 melanoma (F1 and F10 strain) cells in Swiss albino, C57BL/6, and BALB/c mice was reduced by a single dose of histamine given 24 h before tumor cell inoculation. The antimetastatic effect of histamine was specifically mediated by histamine H2-receptors (H2R): it was blocked by the H2R antagonist ranitidine and mimicked by dimaprit, a specific H2R agonist but not by an H2R-inactive structural analog of this compound, nor-dimaprit, or the H1R agonist 2-thiazolyl-ethylamide. A single dose of any of the H2R antagonists ranitidine, tiotidine, famotidine, or cimetidine drastically augmented metastasis. Effects of H2R-interactive compounds on B16 metastasis required intact NK cells, as judged by the inability of histamine or ranitidine to affect B16 metastasis after NK cell depletion in vivo using antibodies to asialo-GM1. NK-cell-mediated lysis of YAC-1 lymphoma cells in vivo was enhanced by histamine and reduced by ranitidine within 4 h after inoculation of tumor cells. The antimetastatic effect of IL-2 was potentiated by histamine; in some experiments, combined treatment with a low dose of IL-2 (6000 U/kg) and histamine completely eliminated metastasis, whereas concomitant treatment with ranitidine abrogated antimetastatic effects of IL-2; animals treated with ranitidine and IL-2 displayed the same level of enhanced metastasis as those treated with ranitidine alone. The presented data are suggestive of an earlier unrecognized role for histamine in NK cell-mediated resistance against metastatic tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号