首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Origin of the polymorphism of the involucrin gene in Asians.   总被引:1,自引:0,他引:1       下载免费PDF全文
The involucrin gene, encoding a protein of the terminally differentiated keratinocyte, is polymorphic in the human. There is polymorphism of marker nucleotides a two positions in the coding region, and there are over eight polymorphic forms based on the number and kind of 10-codon tandem repeats in that part of the coding region most recently added in the human lineage. The involucrin alleles of Caucasians and Africans differ in both nucleotides and repeat patterns. We show that the involucrin alleles of East Asians (Chinese and Japanese) can be divided into two populations according to whether they possess the two marker nucleotides typical of Africans or Caucasians. The Asian population bearing Caucasian-type marker nucleotides has repeat patterns similar to those of Caucasians, whereas Asians bearing African-type marker nucleotides have repeat patterns that resemble those of Africans more than those of Caucasians. The existence of two populations of East Asian involucrin alleles gives support for the existence of a Eurasian stem lineage from which Caucasians and a part of the Asian population originated.  相似文献   

2.
Remodeling of the involucrin gene during primate evolution   总被引:7,自引:0,他引:7  
H Tseng  H Green 《Cell》1988,54(4):491-496
The protein involucrin is a product of terminal differentiation in the epidermal cell and related cell types. By comparing the nucleotide sequence of the involucrin gene of the lemur with that of the human, it is clear that the gene has undergone unusual evolution in the primates. The coding region of the gene contains an ancestral segment, most of which is common to the lemur and the human, and a species-specific segment of repeats derived from the ancestral segment. Instead of the modern segment of repeats found in the human gene, the lemur gene possesses repeats derived from another sequence at a different location in the ancestral segment. The two kinds of segments of repeats probably represent alternative ways of creating a repeat structure in the involucrin molecule. The modern segment of repeats must have been created after divergence of the higher primates from the prosimians.  相似文献   

3.
A nonsense mutation at codon 95 (R95X) in the C9 gene is responsible for most Japanese C9 deficiency (C9D) cases, with a carrier frequency of 6.7%. Upon analysis of microsatellite markers and newly identified dinucleotide repeat number polymorphisms in the 3' flanking region of the C9 gene, a founder effect was demonstrated for the R95X mutation of the C9 gene in Japanese. Screening for the R95X mutation in Korean and Chinese individuals showed that the R95X carrier frequencies in Koreans and Chinese were 2.0% and 1.0%, respectively. Although homozygotes for the R95X mutation were not found in Korea or China, the shared haplotype of the dinucleotide repeat number polymorphisms appeared to be associated with the R95X mutation in the heterozygotes in Korea and China. The founder effect found in East Asians (Japanese, Koreans and Chinese) but not in Caucasians, as well as the haplotype sharing in only a small chromosomal interval, suggested that the R95X mutation of C9 gene was ancient and had occurred after the divergence of East Asians and Caucasians, and before migration of the Yayoi people to Japan. Since the mortality of meningococcal infections in complement-deficient patients is lower than that in normal individuals, a founder effect and a selective advantage in isolation might be the main reasons for the high frequency of the R95X mutation in Japan.  相似文献   

4.
Hemifacial deficiency appeared in 10% of juvenile mice when BALB/cGaBc mice carrying the recessive lethal mutation far were crossed with ICR/Bc. The hemifacial deficiency increased to 15-20% after one backcross to ICR/Bc and then remained at that level for 11 additional generations of backcrossing of far into ICR/Bc. Neither the ICR/Bc strain nor BALB/cGaBc (+/far) produces hemifacial deficiency. Genetic and anatomical studies of adults and fetuses showed that the hemifacial deficiency was due to +/far in the ICR/Bc strain genome; that is, far becomes an incomplete dominant in the ICR/Bc strain background. The hemifacial deficiency (38% of +/far) is probably caused by premature synostosis of the maxilla and premaxilla, observable on day 16 of gestation. An additional 20% of +/far in ICR/Bc have cleft palate and die at birth. Most +/far in both strains have a hidden anomaly, bilateral splitting of the maxillary branch of the trigeminal nerve. far/far homozygotes of both strain backgrounds have a syndrome of severe bilateral deficiency of the derivatives of the maxillary prominence. In human pedigrees, where the equivalents of the dominance modifiers in BALB/cGaBc and ICR/Bc would segregate within families, it would be difficult to recognize that sporadic hemifacial deficiency and severe bilateral maxillary deficiency were due to the same gene. We suggest that human bilateral and unilateral abnormalities of tissue derived from the first branchial arch should be analyzed with the awareness that, in mice, at least, the two kinds of syndrome are due to the same mutant gene.  相似文献   

5.
The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region (“BRC repeats”) with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.  相似文献   

6.
In the evolutionary line leading to the higher primates, the coding region of the involucrin gene evolved a segment consisting of numerous repeats of a 10-codon sequence. Additions to this segment of repeats have been made successively, thus generating regions that can be defined as early, middle, and late. The involucrin gene of the orangutan (Pongo pygmaeus abelii) possesses a segment of repeats whose early region has the same repeat structure as that in other anthropoids. The middle region is not similar in repeat structure to that of all anthropoids but is similar to that of other hominoids. The late region is unique to the species; it does not correspond at all in its repeat structure to that of the human or gorilla and is much larger. The late region of the orangutan was generated by duplications of blocks of older repeats clearly belonging to the middle region. Continued duplications extending the late region are an evolutionary trend in the hominoids. The process of addition of repeats at a particular location is a more significant aspect of the evolution of involucrin than are random nucleotide substitutions; in addition, it has proceeded more rapidly.   相似文献   

7.
The purpose of this study was to document the extent of disruption in the pattern of palatal rugae caused by the presence of one copy of the First arch mutation. The palatal ruga pattern was found to be disrupted in 86% of 15- to 17-day mouse fetuses that were heterozygous for the First arch mutation in the ICR/Bc strain, compared with 9% in ICR/Bc fetuses of normal (+/+) genotype. This new observation in First arch heterozygotes, together with the previously reported dominant effects of the First arch mutation, particularly the bifurcation of the maxillary nerve (100% in both BALB/cGaBc and ICR/Bc strains), the disruption of maxillary vibrissa pattern (80% in ICR/Bc), and the hemifacial deficiency (38% in ICR/Bc), has led us to redefine the First arch mutation as a semidominant, Far. Like the other defects caused by Far, the rugal defects are in tissue derived from the embryonic maxillary prominence. The rugal defects observed in +/Far palates were always asymmetrical and most often involved fragmentation and misalignment of two or more of rugae 4-7. The relatively large degree of variation in ruga pattern observed in fetuses of normal genotype suggests that it is a less well canalized trait than the normal pattern of maxillary vibrissae which varies only in a few very specific and minor ways. The First arch mutation, which in heterozygotes disrupts pattern formation in both palatal rugae and maxillary vibrissae, can be used to study genetic control of pattern formation in mammalian embryos.  相似文献   

8.
研究表明:氧化LDL(Ox-LDL)可抑制LPS诱导的巨噬细胞NO释放,而正常LDL和乙酰化LDL则无抑制作用。用谷胱甘肽地的酶模拟物ebselen清除Ox-LDL上的脂氢过氧化物对其抑制作用没有影响。Ox-LDL的蛋白组分对NO释放也没有影响,而脂质组分则有抑制作用。LDL脂质的主要成分亚油酸和卵磷脂无论单独还是共同氧化后对NO释放都没有影响,而亚油酸和胆固醇一起氧化后则对NO的释放有很强的抑制  相似文献   

9.
Summary Chloroplast DNA (cpDNA) restriction analysis was used to classify five reforestation seedlots as to species. The material included two Sitka spruce (Picea sitchensis (Bong.) Carr.), one white spruce (P. glauca (Moench) Voss) from interior British Columbia, and two putative hybrid seedlots from the coast-interior introgression zone in British Columbia. The cpDNA patterns generated by Bam-HI and Bc1-I from individual trees of Sitka spruce, white spruce, western white spruce (P. glauca var. albertiana (S. Brown)), and Engelmann spruce (P. engelmanni (Parry)) were species-specific. They were used as reference patterns for comparisons. In addition, two controlled crosses between white and Sitka spruce were analyzed to demonstrate the paternal inheritance of cpDNA in spruces. The cpDNA restriction patterns for the five seedlots were obtained from composite samples of seedlings from each lot and compared to the typical cpDNA patterns of each species. Restriction patterns for the two Sitka spruce seedlots agreed with those from the Sitka spruce tree, while patterns for the white spruce seedlots from British Columbia agreed with those from the white spruce tree, lacking evidence of any Engelmann spruce component in the sample. On the other hand, one putative hybrid seedlot showed cpDNA patterns similar to white spruce while the other showed fragments unique to both Sitka and white spruce, indicating that this was a hybrid seedlot. The analysis of cpDNA restriction polymorphism has proven to be an effective tool for classifying seedlots in regions of introgression. To our knowledge, these results provide the first demonstration of the use of cpDNA analysis for solving practical forestry problems.  相似文献   

10.
The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.  相似文献   

11.
Cytochrome P450 2E1 (CYP2E1) is a toxicologically very important enzyme with a high extent of interindividual variability in expression. We sequenced and characterized the 5'-flanking region of the human and rat CYP2E1 genes. The identity between the human and rat sequences (-3.8 kb to +1 kb) was generally between 35 and 60%, and the most similar regions were found in the proximal part of the sequence. Two more distant regions at -1.6 to -2.0 kb and -2.5 to -2. 8 kb in the human sequence were also found to have high identity to the rat sequence. A polymorphic repeat sequence in the human gene was found between -2178 to -1945 bp. The common allele (CYP2E1*1C) contained 6 repeats (each 42-60 bp long) and the rare allele (CYP2E1*1D) had 8 repeats with an allele frequency of 1% among Caucasians and 23% among Chinese. The CYP2E1 5'-flanking regions of the human (-3712 bp to +10 bp) and rat (-3685 bp to +28 bp) genes were ligated in front of a luciferase reporter gene and transfected into rat hepatoma Fao and human hepatoma B16A2 cells. Important species specificity was noted in the control of gene expression and regions of negative and positive cis-acting elements were localized. No difference was seen in the constitutive expression between the two polymorphic forms. The importance of this repeat polymorphism for high and low inducible CYP2E1 phenotypes is discussed.  相似文献   

12.
Djian P  Delhomme B 《Genetics》2005,169(4):2199-2208
The involucrin gene encodes a protein of terminally differentiated keratinocytes. Its segment of repeats, which represents up to 80% of the coding region, is highly polymorphic in mouse strains derived from wild progenitors. Polymorphism includes nucleotide substitutions, but is most strikingly due to the recent addition of a variable number of repeats at a precise location within the segment of repeats. Each mouse taxon examined showed consistent and distinctive patterns of evolution of its variable region: very rapid changes in most M. m. domesticus alleles, slow changes in M. m. musculus, and complete arrest in M. spretus. We conclude that changes in the variable region are controlled by the genetic background. One of the M. m. domesticus alleles (DIK-L), which is of M. m. musculus origin, has undergone a recent repeat duplication typical of M. m. domesticus. This suggests that the genetic background controls repeat duplications through trans-acting factors. Because the repeat pattern differs in closely related murine taxa, involucrin reveals with greater sensitivity than random nucleotide substitutions the evolutionary relations of the mouse and probably of all murids.  相似文献   

13.
Human angiotensin I-converting enzyme gene and endurance performance.   总被引:15,自引:0,他引:15  
Human physical performance is strongly influenced by genetic factors. A variation in the structure of the human angiotensin I-converting enzyme (ACE) gene has been reported in which the insertion (I) variant is associated with lower ACE levels than the deletion (D) gene. We have previously reported that the I variant was associated with improved endurance performance in high-altitude mountaineers and British Army recruits. We now examine this genotype distribution in 91 British Olympic-standard runners (79 Caucasians). DNA was extracted from the buccal cells contained in 10 ml of saline mouthwash donated by the subjects, and the I and D variants of the ACE gene were identified by PCR amplification of the polymorphic region. There was an increasing frequency of the I allele with distance run [0.35, 0.53, and 0.62 for /=5,000 m (n = 34), respectively; P = 0.009 for linear trend]. Among 404 Olympic-standard athletes from 19 other mixed sporting disciplines (in which endurance performance was not necessarily a key factor), the I allele did not differ significantly from that found in control subjects: 0.50 vs. 0.49 (P = 0.526). These results support a positive association of the I allele with elite endurance performance.  相似文献   

14.
Ribosomal loci represent a major tool for investigating environmental diversity and community structure via high-throughput marker gene studies of eukaryotes (e.g. 18S rRNA). Since the estimation of species’ abundance is a major goal of environmental studies (by counting numbers of sequences), understanding the patterns of rRNA copy number across species will be critical for informing such high-throughput approaches. Such knowledge is critical, given that ribosomal RNA genes exist within multi-copy repeated arrays in a genome. Here we measured the repeat copy number for six nematode species by mapping the sequences from whole genome shotgun libraries against reference sequences for their rRNA repeat. This revealed a 6-fold variation in repeat copy number amongst taxa investigated, with levels of intragenomic variation ranging from 56 to 323 copies of the rRNA array. By applying the same approach to four C. elegans mutation accumulation lines propagated by repeated bottlenecking for an average of ~400 generations, we find on average a 2-fold increase in repeat copy number (rate of increase in rRNA estimated at 0.0285-0.3414 copies per generation), suggesting that rRNA repeat copy number is subject to selection. Within each Caenorhabditis species, the majority of intragenomic variation found across the rRNA repeat was observed within gene regions (18S, 28S, 5.8S), suggesting that such intragenomic variation is not a product of selection for rRNA coding function. We find that the dramatic variation in repeat copy number among these six nematode genomes would limit the use of rRNA in estimates of organismal abundance. In addition, the unique pattern of variation within a single genome was uncorrelated with patterns of divergence between species, reflecting a strong signature of natural selection for rRNA function. A better understanding of the factors that control or affect copy number in these arrays, as well as their rates and patterns of evolution, will be critical for informing estimates of global biodiversity.  相似文献   

15.
The p53 gene product is part of a pathway regulating growth arrest at the G1 checkpoint of the cell cycle. Mutation of other components of this pathway, including the products of the ataxia telangiectasia (AT), GADD45, mdm2, and p21WAF1/CIP1 genes may have effects comparable to mutations in the p53 gene. The GADD45 gene is induced by ionizing radiation and several DNA-damaging xenobiotics. Induction requires the binding of wild-type p53 to an evoulutionarily highly conserved putative intronic p53 binding site in intron 3 of GADD45. We recently analyzed the entire coding region of the p53 gene in primary breast cancers of Midwestern white women and found 21 mutations among 53 tumors (39,6%). We now have shown by direct sequencing that there are no mutations in the intronic p53 binding site of the GADD45 gene in any of the 53 primary breast cancers and no mutations in the entire coding region of the GADD45 gene in a subset of 26 consecutive tumors (12 with p53 mutation and 14 without p53 mutation). The only sequence variation detected was a common polymorphism in intron 3. The absence of mutations in the GADD45 gene, including the putative p53-binding intronic site, suggests that this gene is not a frequent target of mutations in breast cancer. Although mutations of the p53 gene have been studied in a wide spectrum of human cancers, GADD45 has not been examined in any tumor or cell line to the best of our knowledge. Our results raise the possibility that mutation of the GADD45 gene alone is not functionally equivalent to loss of wild-type p53 activity. Received: 14 September 1995  相似文献   

16.
Three genes, Mc1r, Agouti, and CBD103, interact in a type-switching process that controls much of the pigmentation variation observed in mammals. A deletion in the CBD103 gene is responsible for dominant black color in dogs, while the white-phased black bear (“spirit bear”) of British Columbia, Canada, is the lightest documented color variant caused by a mutation in Mc1r. Rare all-white animals have recently been discovered in a new northeastern population of the coyote in insular Newfoundland and Labrador, Canada. To investigate the causative gene and mutation of white coat in coyotes, we sequenced the three type-switching genes in white and dark-phased animals from Newfoundland. The only sequence variants unambiguously associated with white color were in Mc1r, and one of these variants causes the amino acid variant R306Ter, a premature stop codon also linked to coat color in Golden Retrievers and other dogs with yellow/red coats. The allele carrying R306Ter in coyotes matches that in the Golden Retriever at other variable amino acid sites and hence may have originated in these dogs. Coyotes experienced introgression with wolves and dogs as they colonized northeastern North America, and coyote/Golden Retriever interactions have been observed in Newfoundland. We speculate that natural selection, with or without a founder effect, may contribute to the observed frequency of white coyotes in Newfoundland, as it has contributed to the high frequency of white bears, and of a domestic dog-derived CBD allele in gray wolves.  相似文献   

17.
A compound imperfect dinucleotide repeat element, [CA]4TTTGT[CT]7[CA]9AA[CA]4CCACATA[CA]3, was found approximately 10 kb 3' to the human glucokinase gene (GCK) from analysis of contiguous genomic DNA obtained from a bacteriophage lambda chromosome walk. Direct human genomic sequencing revealed the source of polymorphism to be variable numbers of CT and CA repeats. Altogether six alleles that range in length from +10 to -15 nucleotides compared to the most common (Z) allele have been identified. Alleles Z, Z + 2, and Z + 4 were present in American Blacks, Pima Indians, and Caucasians, with somewhat varied frequencies among the groups. Two alleles, Z + 10 and Z - 15, appear to be unique to American Blacks, while a Z + 6 allele was observed only in the Caucasian population studied. Observed heterozygosity of the polymorphism in the CEPH reference pedigree collection is 44% and the PIC 0.44. The polymorphism is assayed by PCR amplification and resolution of 32P-end-labeled products (ranging in length from 180 to 205 bp) on denaturing polyacrylamide sequencing gels. Using the PCR assay, the human glucokinase gene was physically localized to chromosome 7 in a panel of rodent/human somatic cell lines. Genetic analysis in CEPH pedigrees placed the dinucleotide repeat element, and thereby the human glucokinase gene, on chromosome 7p between TCRG and a RFLP locus D7S57. The glucokinase dinucleotide repeat genetic marker can now be used to assess the role of the glucokinase gene in diabetes by population association studies. In addition, this repeat marker and others flanking it on chromosome 7 can be used in linkage studies with families segregating the disorder.  相似文献   

18.
The human FUT7 gene codes for the alpha1,3-fucosyltransferase VII (Fuc-TVII), which is involved in the biosynthesis of the sialyl Lewis x (SLe(x)) epitope on human leukocytes. The FUT7 gene has so far been considered to be monomorphic. Neutrophils isolated from patients with ulcerative colitis were examined for apparent alterations in protein glycosylation patterns by Western blot analysis using monoclonal antibodies directed against SLe(x) and SLe(x)-related epitopes. One individual showed lower levels of SLe(x) expression and an elevated expression of CD65s compared to controls. The coding regions of the FUT7 gene from this individual were cloned, and a G329A point mutation (Arg(110) --> Gln) was found in one allele, whereas the other FUT7 allele was wild type. No Fuc-TVII enzyme activity was detected in COS-7 cells transiently transfected with the mutated FUT7 construct. The FUT7 Arg(110) is conserved in all previously cloned vertebrate alpha 1,3-fucosyltransferases. Polymerase chain reaction followed by restriction enzyme cleavage was used to screen 364 unselected Caucasians for the G329A mutation, and a frequency of < or =1% for this mutation was found (3 heterozygotes). Genetic characterization of the family members of one of the additional heterozygotes identified one individual carrying the G329A mutation in both FUT7 alleles. Peripheral blood neutrophils of this homozygously mutated individual showed a lowered expression of SLe(x) and an elevated expression of CD65s when analyzed by Western blot and flow cytometry. The homozygous individual was diagnosed with ulcer disease, non-insulin-dependent diabetes, osteoporosis, spondyloarthrosis, and Sj?gren's syndrome but had no history of recurrent bacterial infections or leukocytosis.  相似文献   

19.
We have identified a highly informative dinucleotide repeat in the 5′-flanking region of the human high mobility group I-C (HMGI-C) gene. This polymorphism consists of 18–37 copies of a (CT) repeat with an observed heterozygosity of 82–83% in African Americans and Caucasians. Linkage analysis in CEPH pedigrees localized the HMGI-C gene to chromosome region 12q13–15 with no recombination observed between HMCI-C and markers D12S102 and D12S8. Received: 16 February 1996 / Revised: 30 April 1996, 29 July 1996  相似文献   

20.
The P2X(7) gene is important for the innate immune response but known polymorphisms do not explain all subjects with loss of P2X(7) function. A splice site mutation (g-->t) was found at position +1 of the first intron of the P2X(7) gene in 7 of 336 Caucasians and 1 of 39 subjects of Indian ethnicity. All eight subjects were heterozygous for the uncommon 1513A-->C polymorphism of the P2X(7) gene. RT-PCR and sequencing showed the splice site mutation was on the 1513C allele in the Caucasians and on the 1513A allele in the Indian subject. The splice site mutation is an inherited polymorphism and gives rise to a P2X(7) null allele in 1-2% of the Caucasian population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号