首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been an explosion of structural information for pharmaceutical compounds bound to biological targets, but the conformations and dynamics of compounds free in solution are poorly characterized, if at all. Yet, knowledge of the unbound state is essential to understand the fundamentals of molecular recognition, including the much debated conformational intramolecular reorganization energy of a compound upon binding (ΔEReorg). Also, dependable observation of the unbound compounds is important for ligand-based drug discovery, e.g. with pharmacophore modelling. Here, these questions are addressed with long (⩾0.5 μs) state-of-the-art molecular dynamics (MD) simulations of 26 compounds (including 7 approved drugs) unbound in explicit solvent. These compounds were selected to be chemically diverse, with a range of flexibility, and good quality bioactive X-ray structures. The MD-simulated free compounds are compared to their bioactive structure and conformers generated with ad hoc sampling in vacuo or with implicit generalized Born (GB) aqueous solvation models. The GB conformational models clearly depart from those obtained in explicit solvent, and suffer from conformational collapse almost as severe as in vacuo. Thus, the global energy minima in vacuo or with GB are not suitable representations of the unbound state, which can instead be extensively sampled by MD simulations. Many, but not all, MD-simulated compounds displayed some structural similarity to their bioactive structure, supporting the notion of conformational pre-organization for binding. The ligand–protein complexes were also simulated in explicit solvent, to estimate ΔEReorg as an enthalpic difference ΔHReorg between the intramolecular energies in the bound and unbound states. This fresh approach yielded ΔHReorg values  6 kcal/mol for 18 out of 26 compounds. For three particularly polar compounds 15  ΔHReorg  20 kcal/mol, supporting the notion that ΔHReorg can be substantial. Those large ΔHReorg values correspond to a redistribution of electrostatic interactions upon binding. Overall, the study illustrates how MD simulations offer a promising avenue to characterize the unbound state of medicinal compounds.  相似文献   

2.
Blackcurrants are rich in polyphenolic glycosides called anthocyanins, which may inhibit postprandial glycemia. The aim was to determine the dose-dependent effects of blackcurrant extract on postprandial glycemia. Men and postmenopausal women (14 M, 9 W, mean age 46 years, S.D.=14) were enrolled into a randomized, double-blind, crossover trial. Low sugar fruit drinks containing blackcurrant extract providing 150-mg (L-BE), 300-mg (M-BE) and 600-mg (H-BE) total anthocyanins or no blackcurrant extract (CON) were administered immediately before a high-carbohydrate meal. Plasma glucose, insulin and incretins (GIP and GLP-1) were measured 0–120 min, and plasma 8-isoprostane F, together with arterial stiffness by digital volume pulse (DVP) was measured at 0 and 120 min. Early plasma glucose response was significantly reduced following H-BE (n=22), relative to CON, with a mean difference (95% CI) in area over baseline (AOB) 0-30 min of −0.34 mmol/l.h (−0.56, −0.11, P<.005); there were no differences between the intermediate doses and placebo. Plasma insulin concentrations (AOB 0–30 min) were similarly reduced. Plasma GIP concentrations (AOB 0–120 min) were significantly reduced following H-BE, with a mean difference of −46.6 ng/l.h (−66.7, −26.5, P<.0001) compared to CON. Plasma GLP-1 concentrations were reduced following H-BE at 90 min. There were no effects on 8-isoprostane F or vascular function. Consumption of blackcurrant extract in amounts roughly equivalent to 100-g blackcurrants reduced postprandial glycemia, insulinemia and incretin secretion, which suggests that inclusion of blackcurrant polyphenols in foods may provide cardio-metabolic health benefits. This trial was registered at clinicaltrials.gov as NCT01706653.  相似文献   

3.
Here we report the in vitro antimicrobial activity (minimum inhibitory concentration) of fourteen coumarinyl amino alcohols 216 against eight bacterial strains and two fungi. Among these compounds 4, 8, 12, 15 and 16 showed moderate to good microbial inhibition with MIC values varied from 6.25 to 25 μg/mL. The most promising compounds were also evaluated for their in vitro cytotoxic and E. coli DNA gyrase inhibitory activities along with the two 7-oxy-4-methyl coumarinyl amino alcohol derivatives 17 and 18, which were found to be the most potent in in vitro antimicrobial screening in our previous study. All the active compounds, including 17 and 18, were also docked into the E. coli DNA gyrase ATP binding site (PDB ID: 1KZN) to investigate their binding interactions. Of these compound 17 has shown maximum binding energy value of −6.13 kcal/mol.  相似文献   

4.
《Harmful algae》2007,6(2):153-165
In Greek coastal waters, the toxic dinoflagellate Alexandrium minutum (strain AJ879163) was detected for the first time in spring 2002. This species proliferated during spring–summer of 2002 and 2003 over a wide geographic range along the north-south Aegean Sea coastline, mostly at low concentrations (average: 102–103 cells L−1) with one exception of higher abundance (average: 105 cells L−1). This study presents data on environmental (temperature, salinity, chl α, nutrients) and ecological (phytoplankton species composition, diversity, taxa dominance, community dissimilarities) parameters in the areas of A. minutum occurrence. A. minutum was isolated and grown in batch cultures used in a series of bioassay experiments for determination of its pigment composition by HPLC, half saturation constants (Ks) for nitrogen and phosphorus, and its response to different nitrogen to phosphorus (N:P) ratios.  相似文献   

5.
The present study was undertaken to gain insight into the associations of mercury(II) with dicysteinyl tripeptides in buffered media at pH 7.4. We investigated the effects of increasing the distance between cysteinyl residues on mercury(II) associations and complex formations. The peptide–mercury(II) formation constants and their associated thermodynamic parameters in 3-(N-morpholino)propanesulfonic acid (MOPS) buffered solutions were evaluated by isothermal titration calorimetry. Complexes formed in different relative ratios of mercury(II) to cysteinyl peptides in ammonium formate buffered solutions were characterized by LTQ Orbitrap mass spectrometry. The results from these studies show that n-alkyl dicysteinyl peptides (CP 14), and an aryl dicysteinyl peptide (CP 5) can serve as effective “double anchors” to accommodate the coordination sites of mercury(II) to form predominantly one-to-one Hg(peptide) complexes. The aryl dicysteinyl peptide (CP 5) also forms the two-to-two Hg2(peptide)2 complex. In the presence of excess peptide, Hg(peptide)2 complexes are also detected. Notably, increasing the distance between the ligating groups or “anchor points” in CP 15 does not significantly affect their affinity for mercury(II). However, the enthalpy change (ΔH) values (ΔH1  −91 kJ mol−1 and ΔH2  −66 kJ mol−1) for complex formation between CP 4 and 5 with mercury(II) are about one and a half times larger than the related values for CP 1, 2 and 3H1  −66 kJ mol−1 and ΔH2  46 kJ mol−1). The corresponding entropy change (ΔS) values (ΔS1  −129 J K−1 mol−1 and ΔS2  −116 J K−1 mol−1) of the structurally larger dicysteinyl peptides CP 4 and 5 are less entropically favorable than for CP 1, 2 and 3S1  −48 J K−1 mol−1 and ΔS2  −44 J K−1 mol−1). Generally, these associations result in a decrease in entropy, indicating that these peptide–mercury complexes potentially form highly ordered structures. The results from this study show that dicysteinyl tripeptides are effective in binding mercury(II) and they are promising motifs for the design of multi-cysteinyl peptides for binding more than one mercury(II) ion per peptide.  相似文献   

6.
Evidence for Zn protection against Cd-induced reactive oxygen species in the free-floating hydrophyte Ceratophyllum demersum L. is presented in this paper. Metal treatments of 10 μmol/L Cd, 10 Cd μmol/L supplemented with Zn (10, 50, 100 and 200 μmol/L) and Zn-alone treatments of the same concentrations were used. Using 5,5 dimethyl pyrroline-N-oxide as the spin-probe, electron spin resonance spectra indicated a drastic increase in hydroxyl radicals (OH) in Cd-10 μmol/L treatments, which was closely correlating with the enhanced formation of hydrogen peroxide (H2O2) and generation of superoxide radical (O2?) triggered by the oxidation of NADPH. The supplementation of adding Zn (10–200 μmol/L) to the Cd-10 μmol/L treatments significantly decreased the production of free radicals especially by eliminating the precursors of OH through inhibition of NADPH oxidation. Cd-enhanced ROS production which substantially increased the oxidative products of proteins measured as carbonyls was effectively inhibited by Zn supplementation.  相似文献   

7.
Our kinetics studies demonstrated that the nature product chrysin exhibited a high inhibitory affinity of 54 nM towards human cytochrome P450 1A2 and was comparable to α-naphthoflavone (49 nM), whereas it represented a moderate affinity of 5225 nM against human cytochrome P450 2C9. However, it remains unclear how this inhibitor selectively binds 1A2. To better understand the isoform selectivity of chrysin, molecular docking and molecular dynamics simulations were performed. Chrysin formed a strong H-bond with Asp313 of 1A2. The stacking interactions with Phe226 also contributed to its tight binding to 1A2. The larger and much more open active site architectures of 2C9 may explain the weaker inhibitory affinity of chrysin towards 2C9. The predicted binding free energies suggest that chrysin preferred 1A2 (ΔGbind, pred = ?23.11 kcal/mol) to 2C9 (?20.41 kcal/mol). Additionally, the present work revealed that 7-hydroxy-flavone bound to 1A2 in a similar pattern as chrysin and represented a slightly less negative predicted binding free energy, which was further validated by our kinetics analysis (IC50 = 240 nM). Results of the study can provide insight for designing novel isoform-selective 1A2 inhibitors.  相似文献   

8.
The branched structure properties of hyperbranched polysaccharides (TM3a and TM3b), extracted from sclerotia of Pleurotus tuber-regium, were studied by using laser light scattering and viscometry. The configurational shrinking factor (g) and viscometric shrinking factor (g′) of TM3a and TM3b were discussed, where curdlan and pullulan were taken as the linear references for derivation of g and g′. The dependences of g factor, g′ factor, and Flory factor (Φbranched) on weight average molecular weight (Mw) were established to be g = 1.07 × 102Mw-0.48±0.09, g′ = 3.63 × 101Mw-0.43±0.01, and Φbranched = 7.08 × 1020Mw0.39±0.1 for TM3a in 0.25 M LiCl/DMSO at 25 °C, when curdlan acted as the linear reference. A power law relationship g = 2.71 × 10?1g?0.61±0.1 for TM3a was found, and the exponent was approximately same to 0.60 established by Kurata et al. for polystyrene star molecules. The dependence of g factor on Mw for TM3b was found to be g = 1.99 × 102Mw-0.53±0.02, when pullulan was used as the linear reference. On the basis of Zimm–Stockmayer equation for tetrafunctional units, molecular weight of branching unit (M0) deduced from nonlinear curve fitting of g versus Mw was 8739 ± 564 g/mol and 3961 ± 1245 g/mol for TM3a and TM3b, respectively. The effect of different linear reference curves and polydispersity was discussed. This work gave valuable information on branched structure characterization and insights into the biosynthetic pathways of the hyperbranched polysaccharide from fungus.  相似文献   

9.
Nox2 oxidase activity underlies the oxidative stress and vascular dysfunction associated with several vascular-related diseases. We have reported that nitric oxide (NO) decreases reactive oxygen species production by endothelial Nox2. This study tested the hypothesis that nitroxyl (HNO), the redox sibling of NO, also suppresses vascular Nox2 oxidase activity. Specifically, we examined the influence of two well-characterized HNO donors, Angeli’s salt and isopropylamine NONOate (IPA/NO), on Nox2-dependent responses to angiotensin II (reactive oxygen species production and vasoconstriction) in mouse cerebral arteries. Angiotensin II (0.1 μmol/L)-stimulated superoxide (measured by lucigenin-enhanced chemiluminescence) and hydrogen peroxide (Amplex red fluorescence) levels in cerebral arteries (pooled basilar and middle cerebral (MCA)) from wild-type (WT) mice were ~60% lower (P<0.05) in the presence of either Angeli’s salt (1 μmol/L) or IPA/NO (1 μmol/L). Similarly, phorbyl 12,13-dibutyrate (10 μmol/L; Nox2 activator)-stimulated hydrogen peroxide levels were ~40% lower in the presence of IPA/NO (1 μmol/L; P<0.05). The ability of IPA/NO to decrease superoxide levels was reversible and abolished by the HNO scavenger l-cysteine (3 mmol/L; P<0.05), but was unaffected by hydroxocobalamin (100 μmol/L; NO scavenger), ODQ (10 μmol/L; soluble guanylyl cyclase (sGC) inhibitor), or Rp-8-pCPT-cGMPS (10 μmol/L; cyclic guanosine monophosphate (cGMP)-dependent protein kinase inhibitor). Angiotensin II-stimulated superoxide was substantially less in arteries from Nox2-deficient (Nox2−/y) versus WT mice (P<0.05). In contrast to WT, IPA/NO (1 μmol/L) had no effect on superoxide levels in arteries from Nox2−/y mice. Finally, angiotensin II (1–1000 μmol/L)-induced constriction of WT MCA was virtually abolished by IPA/NO (1 μmol/L), whereas constrictor responses to either the thromboxane A2 mimetic U46619 (1–100 nmol/L) or high potassium (122.7 mmol/L) were unaffected. In conclusion, HNO suppresses vascular Nox2 oxidase activity via a sGC–cGMP-independent pathway. Thus, HNO donors might be useful therapeutic agents to limit and/or prevent Nox2-dependent vascular dysfunction.  相似文献   

10.
11.
《Process Biochemistry》2007,42(12):1571-1578
A Bacillus sp. isolated from the Sundarbans region of the Bay of Bengal (NCBI GenBank Accession no. AY723697) which can tolerate 10% (w/v) NaCl, produces esterase optimally in Marine Broth 2216 medium containing 1% (w/v) NaCl. The enzyme was purified 42.7-fold with 6.4% recovery, (specific activity 569.2 U/mg protein) by ammonium sulphate precipitation followed by anion and cation exchange chromatography. The serine type esterolytic enzyme has a molecular weight of 35.0 kDa and is denatured into polypeptides of molecular weights 20 kDa and 15 kDa. The esterase was most active at pH 8.0, the pH of the seawater at the site of collection and is stable in the pH range 6.0–9.0. The optimum temperature of activity of this esterase is 45 °C and the enzyme is very stable after 1 h pre-incubation at 50 °C. Our esterase shows about 100% activity when incubated with 1 M NaCl, the activity drops to about 50% when incubated with 2.5 M sodium chloride and the enzyme is completely inactivated when 4 M NaCl is present during reaction. The esterase is almost inactivated by Ca2+, Hg2+ and Fe3+ ions, reducing agents and detergent. Interestingly, Co2+, a known inhibitor of many enzymes, preserved 70% of the activity of this esterase. Specific activity of the esterase increases more than twofold in the presence of water-miscible organic solvents as compared to that in aqueous buffer. When incubated for a period of 10 days in the presence of 30–70% dimethylsufoxide (DMSO), the specific activity increased by approximately two–threefold compared to the enzyme in aqueous buffer throughout the period of study. Specific activity between 1283 and 525 U/mg was maintained by our enzyme when incubated with 50% DMSO for 10 days. The enzyme was most active on p-nitrophenyl acetate, ethyl acetate, alpha isomer of naphthyl acetate but shows relatively lesser activity towards triglycerides of fatty acids. Certain characteristics, such as molecular weight, effects of NaCl, metal ions (Zn2+ and Mg2+) and reactivity towards para-nitrophenyl and aliphatic esters were strikingly similar to already described marine bacterial derived esterases. Extreme stability in DMSO could make this enzyme a potential immobilized biocatalyst for application in non-aqueous based continuous bioprocesses. Higher specific activity and purification factor, better thermo tolerance and solvent stability would make our enzyme more attractive for biotechnological applications than the marine microbial derived esterases described so far.  相似文献   

12.
A new series of biquinoline–pyridine hybrids were designed and synthesized by a base-catalyzed cyclocondensation through one-pot multicomponent reaction. All compounds were tested for in vitro anticancer activities against two cancer cell lines A549 (adenocarcinomic human alveolar basal epithelial) and Hep G2 (liver cancer). Enzyme inhibitory activities of all compounds were carried out against EGFR and HER-2 kinase. Of the compounds studied, majority of the compounds showed effective anticancer activity against used cancer cell lines. Compound 9i (IC50 = 0.09 μM) against EGFR and (IC50 = 0.2 μM) against HER-2 kinase displayed the most potent inhibitory activity as compared to other member of the series. In the molecular modelling study, compound 9i was bound in to the active pocket of EGFR with four hydrogen bonds and two π–cation interactions having minimum binding energy ΔGb = −54.4 kcal/mol.  相似文献   

13.
Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of α-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of α-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-ΔalsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed α-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-ΔalsD-alsS, which produced 4.02 g/L α-acetolactate and 1.94 g/L diacetyl, and the conversion from α-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-ΔalsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food-safe bacteria.  相似文献   

14.
Bacillus sp. CSB39, isolated from popular traditional Korean food (Kimchi), produced a low molecular weight, thermostable mannanase (MnCSB39); 571.14 U/mL using locust bean gum galactomannan as a major substrate. It was purified to homogeneity using a simple and effective two-step purification strategy, Sepharose CL-6B and DEAE Sepharose Fast Flow, which resulted in 25.47% yield and 19.32-fold purity. The surfactant-, NaCl-, urea-, and protease-tolerant monomeric protein had a mass of ∼30 kDa as analyzed by SDS-PAGE and galactomannan zymography. MnCSB39 was found to have optimal activity at pH 7.5 and temperature of 70 °C. The enzyme showed ˃55% activity at 5.0–15% (w/v) NaCl, and ˃93% of the initial activity after incubation at 37 °C for 60 min. Trypsin and proteinase K had no effect on MnCBS39. The enzyme showed ˃80% activity in up to 3 M urea. The N-terminal amino acid sequence, ALKGDGX, did not show identity with reported mannanases, which suggests the novelty of our enzyme. Activation energy for galactomannan hydrolysis was 26.85 kJmol−1 with a Kcat of 142.58 × 104 s−1. MnCSB39 had Km and Vmax values of 0.082 mg/mL and 1099 ± 1.0 Umg−1, respectively. Thermodynamic parameters such as ΔH, ΔG, ΔS, Q10, ΔGE-S, and ΔGE-T supported the spontaneous formation of products and the high hydrolytic efficiency and feasibility of the enzymatic reaction, which strengthen its novelty. MnCSB39 activity was affected by metal ions, modulators, chelators, and detergents. Mannobiose was the principal end-product of hydrolysis. Bacillus subtilis CSB39 produced a maximum of 1524.44 U mannanase from solid state fermentation of 1 g wheat bran. MnCSB39 was simple to purify, was active at a wide pH and temperature range, multi-stress tolerant and catalyzes a thermodynamically possible reaction, characteristics that suggests its suitability for application as an industrial biocatalyst.  相似文献   

15.
New Schiff’s base derivatives 5aj have been synthesized by reaction between 2-phenoxyquinoline-3-carbaldehydes 3aj and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetohydrazide 4 in presence of nickel(II) nitrate as a catalyst in ethanol under reflux in good yield (78–92%). All compounds were tested for anticancer and inhibition of EGFR. Of the compounds studied, majority of the compounds showed effective antiproliferation and inhibition of EGFR and HER-2 activities. Compound 5h showed most effective inhibition (IC50 = 0.12 ± 0.05 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = −58.3691 kcal/mol). The binding was stabilized by two hydrogen bonds, two π–cation and one π–sigma interactions. Compound 5d showed most effective inhibition (IC50 = 0.37 ± 0.04 μM).  相似文献   

16.
The studies on adsorption of hexavalent chromium were conducted by varying various parameters such as contact time, pH, amount of adsorbent, concentration of adsorbate and temperature. The kinetics of adsorption of Cr(VI) ion followed pseudo second order. Langmuir adsorption isotherm was employed in order to evaluate the optimum adsorption capacity of the adsorbent. The adsorption capacity was found to be pH dependant. Sawdust was found to be very effective and reached equilibrium in 3 h (adsorbate concentration 30 mg l−1). The rate constant has been calculated at 303, 308, 313 and 318 K and the activation energy (Ea) was calculated using the Arrhenius equation. Thermodynamic parameters such as standard Gibbs energy (ΔG°) and heat of adsorption (ΔHr) were calculated. The ΔG° and ΔHr values for Cr(VI) adsorption on the sawdust showed the process to be exothermic in nature. The percentage of adsorption increased with decrease in pH and showed maximum removal of Cr(VI) in the pH range 4.5–6.5 for an initial concentration of 5 mg l−1.  相似文献   

17.
We searched a UniProt database of lactic acid bacteria in an effort to identify d-amino acid metabolizing enzymes other than alanine racemase. We found a d-amino acid aminotransferase (d-AAT) homologous gene (UniProt ID: Q1WRM6) in the genome of Lactobacillus salivarius. The gene was then expressed in Escherichia coli, and its product exhibited transaminase activity between d-alanine and α-ketoglutarate. This is the first characterization of a d-AAT from a lactic acid bacterium. L. salivarius d-AAT is a homodimer that uses pyridoxal-5′-phosphate (PLP) as a cofactor; it contains 0.91 molecules of PLP per subunit. Maximum activity was seen at a temperature of 60 °C and a pH of 6.0. However, the enzyme lost no activity when incubated for 30 min at 30 °C and pH 5.5 to 9.5, and retained half its activity when incubated at pH 4.5 or 11.0 under the same conditions. Double reciprocal plots of the initial velocity and d-alanine concentrations in the presence of several fixed concentrations of α-ketoglutarate gave a series of parallel lines, which is consistent with a Ping-Pong mechanism. The Km values for d-alanine and α-ketoglutarate were 1.05 and 3.78 mM, respectively. With this enzyme, d-allo-isoleucine exhibited greater relative activity than d-alanine as the amino donor, while α-ketobutylate, glyoxylate and indole-3-pyruvate were all more preferable amino acceptors than α-ketoglutarate. The substrate specificity of L. salivarius d-AAT thus differs greatly from those of the other d-AATs so far reported.  相似文献   

18.
Tannase production by Bacillus subtilis PAB2, was investigated under solid state fermentation using tamarind seed as sole carbon source and it was found as the highest titer (73.44 U/gds). The enzyme was purified to homogeneity, which showed the molecular mass around 52 kDa (Km = 0.445 mM, Vmax = 125.8 mM/mg/min and Kcat = 2.88 min–1). The enzyme was found stable in a range of pH (3.0–8.0) and temperature (30–70 °C) with an optimal activity at pH 5.0, pI of 4.4 and at 40 °C temperature. It exhibited half-life (t1/2) of 4.5 h at 60 °C. The enzyme comprised a typical secondary structure containing α-helix (9.3%), β-pleated sheet (33.6%) and β-turn (17.2%). The native conformation of the enzyme was alike a 44 nm spherical nanoparticle upon aggregation. Thermodynamic parameters of tannase revealed that it was stable at 40 °C and showed Q10, ΔGd and ΔSd values of 2.08, 99.37 KJ/mol and 252.38 J mol−1 K−1, respectively. Organic solvents were stimulatory with regard to enzyme activity. Moreover, the altered enzyme activity was determined to be correlated with the changes in structural conformation in presence of inducer and inhibitor. Tannase was explored to have no cytotoxicity on Vero cell line as well as rat model study.  相似文献   

19.
Anoxybacillus beppuensis TSSC-1 (GenBank Number, EU710556), a thermophilic bacterium isolated from a hot spring reservoir, was found to optimally secrete a monomeric α-amylase at 55 °C and pH 7. The enzyme was purified to homogeneity by a single-step purification on phenyl sepharose 6FF, achieving a 58% yield, 10,000 U/mg specific activity and 19.5 fold purification. The molecular weight, Km and Vmax were 43 kD, 0.5 mg ml?1 and 3571.42 μmol ml?1 m?1, respectively. The enzymatic catalysis of soluble starch was optimum at 80 °C and pH 7. The thermodynamic parameters, Kd, t1/2, ΔH*, ΔS*, E and ΔG*, were consistent. The very compact structure of the enzyme and the transitional enzyme–substrate complex resisted denaturation at extreme temperatures and alkaline pH. The Kd and t1/2 measurements were consistent with the high thermostability and pH tolerance observed. The structural stability of the enzyme was also reflected by the values of ΔH*, ΔS*, E and ΔG*. While the enzyme did not exhibit metal ion dependency, it was resistant to chemical denaturation. The broad thermo- and pH-tolerance of this enzyme suggests potential commercial opportunities.  相似文献   

20.
Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117 N for static axial compression, 3680 N for static compression-shear, and 8.6 N m for static torsion. Median runout load was 2600 N for dynamic axial compression, 1400 N for dynamic compression-shear, and ±1.5 N m for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424 N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号