首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, combined strategies were employed to heterologously overexpress Candida rugosa lipase Lip1 (CRL1) in a Pichia pastoris system. The LIP1 gene was systematically codon-optimized and synthesized in vitro. The Lip1 activity of a recombinant strain harboring three copies of the codon-optimized LIP1 gene reached 1200 U/mL in a shake flask culture. Higher lipase activity, 1450 U/mL, was obtained using a five copy number construct. Co-expressing one copy of the ERO1p and BiP chaperones with Lip1p, the CRL1 lipase yield further reached 1758 U/mL, which was significantly higher than that achieved by expressing Lip1p alone or only co-expressing one molecular chaperone. When cultivated in a 3 L fermenter under optimal conditions, the recombinant strain GS115/87-ZA-ERO1p-BiP #7, expressing the molecular chaperones Ero1p and BiP, produced 13,490 U/mL of lipase activity at 130 h, which was greater than the 11,400 U/mL of activity for the recombinant strain GS115/pAO815-α-mCRL1 #87, which did not express a molecular chaperone. This study indicates that a strategy of combining codon optimization with co-expression of molecular chaperones has great potential for the industrial-scale production of pure CRL1.  相似文献   

2.
Various yeast strains were examined for the microbial reduction of ethyl-3-oxo-3-phenylpropanoate (OPPE) to ethyl-(S)-3-hydroxy-3-phenylpropanoate (S-HPPE), which is the chiral intermediate for the synthesis of a serotonin uptake inhibitor, Fluoxetine. Kluyveromyces lactis KCTC 7133 was found as the most efficient strain in terms of high yield (83% at 50 mM) and high optical purity ee > 99% of S-HPPE. Based on the protein purification, activity analysis and the genomic analysis, a fatty acid synthase (FAS) was identified as the responsible β-ketoreductase. To increase the productivity, a recombinant Pichia pastoris GS115 over-expressing FAS2 (α-subunit of FAS) of K. lactis KCTC7133 was constructed. In the optimized media condition, the recombinant P. pastoris functionally over-expressed the FAS2. Recombinant P. pastoris showed 2.3-fold higher reductase activity compared with wild type P. pastoris. With the recombinant P. pastoris, the 91% yield of S-HPPE was achieved at 50 mM OPPE maintaining the high optical purity of the product (ee > 99%).  相似文献   

3.
In this study, a series of strategies was developed to enhance the expression of an alkaline lipase from Acinetobacter radioresistens (ARL) in Pichia pastoris. Activity of the lipase from recombinant strain carrying a single copy of codon-optimized ARL gene was 65 U/mL in shake flask culture with p-nitrophenyl caprylate as the substrate. The lipase yield was increased to 104 U/mL by introducing a short N-extension spacer peptide coding for the 10 amino acids (EEAEAEAEPK) between α-factor signal peptide and ARL. The N-terminal extension spacer did not affect the pH or temperature properties of the recombinant ARL. After the multi-copy constructs were identified by Q-PCR assay, a higher lipase activity of 180 U/mL was obtained. Further introduction of the spliced HAC1 gene into multi-copy integrants (>6 copies) extensively enhanced the ARL yield by 30–40%. As a result, the ARL yield reached 1.06 × 104 U/mL in a 10-L scaled-up fed-batch fermenter as well as the lipase showed some better properties compared to that wild one from A. radioresistens.  相似文献   

4.
A β-galactosidase gene (designated PaGalA) was cloned for the first time from Paecilomyces aerugineus and expressed in Pichia pastoris under the control of the AOX1 promoter. The coding region of 3036 bp encoded a protein of 1011 amino acids with a deduced molecular mass of 108.7 kDa. The PaGalA without the signal peptide was cloned into a vector pPIC9K and was expressed successfully in P. pastoris as active extracellular β-galactosidase. The recombinant β-galactosidase (PaGalA) was secreted into the medium at an extremely high levels of 22 mg ml−1 having an activity of 9500 U ml−1 from high density fermentation culture, which is by far the highest yield obtained for a β-galactosidase. The purified enzyme with a high specific activity of 820 U mg−1 had a molecular mass of 120 kDa on SDS-PAGE. PaGalA was optimally active at pH 4.5 and a temperature of 60 °C. The recombinant β-galactosidase was able to hydrolyze lactose efficiently at pH 5.0 and 50 °C. It also possessed transglycosylation activities at high concentrations of lactose. PaGalA exhibited better lactose hydrolysis efficiency in whey than two other widely used commercial lactases. The extremely high expression levels coupled with favorable biochemical properties make this enzyme highly suitable for commercial purposes in the hydrolysis of lactose in milk or whey.  相似文献   

5.
The Cel6A deficiency has become one of the limiting factors for cellulose saccharification in biochemical conversion of cellulosic biomass to fuels and chemicals. The work attempted to use codon optimization to enhance Trichoderma reesei Cel6A expression in Pichia pastoris. Two recombinants P. pastoris GS115 containing AOX1 and GAP promotors were successfully constructed, respectively. The optimal temperatures and pHs of the expressed Cel6A from two recombinants were consistent with each other, were also in the extremely similar range to that reported on the native Cel6A from T. reesei. Based on the shake flask fermentation, AOX1 promotor enabled the recombinant to produce 265 U/L and 300 mg/L of the Cel6A enzyme, and the GAP promotor resulted in 145 U/L and 200 mg/L. High cell density fed batch (HCDFB) fermentation significantly improved the enzyme titer (1100 U/L) and protein yield (2.0 g/L) for the recombinant with AOX1 promotor. Results have showed that the AOX1 promotor is more suitable than the GAP for the Cel6A expression in P. pastoris. And the HCDFB cultivation is a favorable way to express the Cel6A highly in the methanol inducible yeast.  相似文献   

6.
A xylanase produced by Thermomyces lanuginosus 195 by solid state fermentation (SSF) was purified 9.3-fold from a crude koji extract, with a 7.6% final yield. The purified xylanase (with an estimated mass of 22 kDa by SDS-PAGE) retained 18% relative activity when treated for 10 min at 100 °C and approximately 90% relative activity when incubated at pH values ranging from 6 to 10. Xylanase activity in the purified preparation was significantly enhanced following treatment with manganese and potassium chlorides (p < 0.05) but significantly reduced by calcium, cobalt and iron (p < 0.05). The purified enzyme was also shown to be exclusively xylanolytic. The gene encoding xylanase activity from T. lanuginosus 195 was functionally expressed by Pichia pastoris. MALDI-ToF mass spectrometry and zymography were employed to confirm functional recombinant expression. Maximum xylanase titres were achieved following 120 h induction of the recombinant culture, yielding 26.8 U/mL. Achieving functional protein expression facilitates future efforts to optimise the cultivation conditions for heterologous xylanase production.  相似文献   

7.
Methanol biofiltration using methylotrophic microorganisms has been previously reported by various authors. In a previous study, a modified strain of Pichia pastoris was tested for the ability to produce endochitinase (Ech42) when coupled with methanol vapor biodegradation in batch tests. The next challenge was to validate the process in a continuous system. Thus, in the present study, a biofilter packed with perlite and inoculated with P. pastoris transformed with the plasmid pPIC-ech42 was used for methanol vapor biofiltration and the continuous production of recombinant endochitinase (Ech42) for 60 days. The maximum elimination capacity (EC) of methanol obtained was 1320 g m?3 h?1 at a loading rate of 1465 g m?3 h?1. The extracellular protein production rate in the leachate was 2360 μg h?1 with a chitinase enzymatic activity of 123 U L?1. The protein content on the biofilm samples was negligible, indicating the effectiveness of the overall process and of P. pastoris to excrete proteins. The carbon balance indicated that 81% of the consumed methanol was mineralized and 5.8% was incorporated into biomass. The results of this study and the economic balance underscore the promising application of linking methanol vapor biofiltration to the continuous production of recombinant proteins.  相似文献   

8.
9.
Hybrid antibacterial peptide CecropinAD (CAD) is a linear cationic peptide that has potent antimicrobial properties without hemolytic activity. To explore a new approach to express the hybrid peptide CAD in the methylotrophic yeast Pichia pastoris, the cDNA sequence encoding CAD was obtained by recursive PCR (rPCR) and cloned into the vector pPICZα-A. The Sac I-linearized recombinant plasmid pPICZα-CAD was transformed into P. pastoris GS115 by electroporation. Expression of recombinant CAD was induced for 96 h with 1.0% methanol at 28 °C, pH 5.0. The recombinant CAD was purified by two steps of reversed-phase HPLC and 1.8 mg pure active CAD was obtained from 100 ml culture. Tricine-SDS-PAGE and mass spectrometry analyses demonstrated that the molecular weight of the purified CAD was 3.8 kDa. Analysis of circular dichroism (CD) revealed that CAD mainly has α-helixes in the presence of 10 mM phosphate buffer (pH 7.2), 50% TFE/water solution (pH 2.0), or 30 mM SDS (pH 10.8). FACScan analysis showed that the antibacterial mechanism of CAD is to act on the cell membrane to disrupt bacterial cell structure. Antimicrobial assays demonstrated that recombinant CAD has a broad spectrum of anti-microbial property against fungi, as well as Gram-positive and Gram-negative bacteria, but does not have hemolytic activity against human erythrocytes. Our results suggest that recombinant antimicrobial peptide CAD may serve as an attractive candidate for the development of therapeutic antimicrobial drugs.  相似文献   

10.
A Coprinus cinereus peroxidase (CiP) was successfully expressed by the methylotrophic yeast Pichia pastoris. The 1095-bp gene encoding peroxidase from C. cinereus was cloned with a highly inducible alcohol oxidase (AOX1) promoter and integrated into the genome of P. pastoris. The recombinant CiP (rCiP) fused with the α-mating factor pre-pro leader sequence derived from Saccharomyces cerevisiae accumulated neither inside the cell nor within the wall, and were efficiently secreted into the culture medium. SDS-PAGE and immunoblot analysis revealed that the rCiP was not hyper-glycosylated and its α-factor signal sequence was correctly processed. It was also found that the kinetic properties of rCiP were similar to those of native CiP. In order to produce large amounts of rCiP, the high cell density cultivation of recombinant P. pastoris was carried out in a fermentor with fed-batch mode. The peroxidase activity obtained in a 5 l fermentor cultivation became about 6 times (1200 U/ml) higher than that in shake-flask cultures (200 U/ml).  相似文献   

11.
12.
《Process Biochemistry》2007,42(5):856-862
N-Acylamino acid racemase (NAAAR) gene of Deinococcus radiodurans BCRC12827 was cloned into expression vector pQE30 to generate pQE-naaar and expressed in recombinant Escherichia coli JM109. The expressed enzyme purified from the crude cell extract of IPTG-induced E. coli JM109 (pQE-naaar) exhibited high racemization activity to N-carbamoyl-l-homophenylalanine (NCa-l-HPA) and N-carbamoyl-d-homophenylalanine (NCa-d-HPA) with specific activities of 1.91 U/mg protein and 1.31 U/mg protein, respectively. To develop a recombinant E. coli whole cell system for the conversion of racemic NCa-HPA to l-homophenylalanine (l-HPA), naaar gene from D. radiodurans and l-N-carbamoylase (LNCA) gene from Bacillus kaustophilus BCRC11223 were cloned and coexpressed in E. coli cells. Recombinant cells treated with 0.5% toluene at 30 °C for 30 min exhibited enhanced NAAAR and LNCA activities, which are about 20- and 60-fold, respectively, higher than those of untreated cells. Using toluene-permeabilized recombinant E. coli cells, a maximal productivity of 7.5 mmol l-HPA/l h with more than 99% yield could be obtained from 150 mmol racemic NCa-HPA. Permeabilized cells also showed considerable stability in the bioconversion process using 10 mmol racemic NCa-HPA as substrate, no significantly decrease in conversion yield for l-HPA was found in the eight cycles.  相似文献   

13.
The myofibril-bound serine proteinase (MBSP) is effective in the degradation of myofibrillar proteins, including myosin heavy chain (MHC), α-actinin, actin, and tropomyosin and was thus regarded as an important proteinase responsible for the metabolism of fish muscle in vivo. In order to better understand the characteristic differences between native MBSP and recombinant MBSP (rMBSP) and to obtain large quantity of MBSP for its application in protein science study, the crucian carp MBSP gene was cloned (669 bp) and expressed in Pichia pastoris (P. pastoris). The recombinant P. pastoris strain was cultured in shake flasks, and 66.85 mg rMBSP/L in the fermentation supernatant was obtained. SDS-polyacrylamide gel electrophoresis (PAGE) showed a main protein band with molecular weight of approximately 36 kDa. Substrate specificity analysis revealed that the rMBSP specifically cleaved substrates at the carboxyl side of lysine residue which differed from native MBSP that cleaved substrates at the carboxyl side of arginine and lysine residues. The optimum temperature and optimum pH range of the rMBSP were 55 °C and pH 7.5, respectively. Furthermore, similar to native MBSP, the rMBSP also revealed high thermostability and pH stability and is effective in degradation of myofibrillar proteins from the skeletal muscle of crucian carp.  相似文献   

14.
Isoamylase is essential to saccharifying starch by cleavage of 1,6-glucoside linkages in starch molecules. In this study, a novel isoamylase gene from Bacillus lentus JNU3 was cloned. The open reading frame of the gene was 2412 base pairs long and encoded a polypeptide of 804 amino acids with a calculated molecular mass of 90 kDa. The deduced amino acid sequence shared less than 40% homology with that of microbial isoamylase ever reported, which indicated it was a novel isoamylase. A constitutive GAP promoter was used to express the recombinant isoamylase in the yeast Pichia pastoris by continuous high cell-density fermentation to avoid the use of methanol, which resulted in 318 U/mL extracellular isoamylase activity after 72 h in a 10 L fermenter. The recombinant enzyme was purified and characterized. It had an estimated molecular mass of 90 kDa, with its optimal activity at 70 °C, pH 6.5 and was quite stable between 30 °C and 70 °C. The recombinant isoamylase proves to be superior to pullulanase as an auxiliary enzyme in maltose production from starch. Therefore it will contribute significantly to the starch debranching process.  相似文献   

15.
Parasin I (PI) is a 19 amino acid peptide with potent antimicrobial activities against a broad spectrum of microorganisms and is a good candidate for development as a novel antimicrobial agent. The objective of this study was to express and characterize a codon optimized parasin I peptide fused with human lysozyme (hLY). A 513 bp cDNA fragment encoding the mature hLY protein and parasin I peptide was designed and synthesized according to the codon bias of Pichia pastoris. A 4 × Gly flexible amino acid linker with an enterokinase cleavage (DDDDK) was designed to link the PI to the C-terminal of hLY. The codon optimized recombinant hLY-PI was cloned into the pPICZαA vector and expressed in P. pastoris. The over-expressed extracellular rehLY-PI was purified using Ni sepharose affinity column and exhibited a molecular mass of approximately 18 kDa. After digested with enterokinase the rehLY-PI protein release its corresponding rehLY and rePI, with molecular mass of 16 kDa and 2 kDa, respectively, on Tricine-SDS-PAGE. The released rehLY exhibited similar lytical activity against Micrococcus lysodeikticus to its commercial hLY. The digested rehLY-PI product exhibited antimicrobial activities against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, and synergism has been found between the released rePI and rehLY. In conclusion, we successfully optimized a rehLY-PI fusion protein encoding gene and over-expressed the rehLY-PI in P. pastoris. The recombination protein digested with enterokinase released functional hLY and antimicrobial parasin I, which demonstrates a potential for future use as an animal feed additive to partly replace antibiotic.  相似文献   

16.
Lipases are the most attractive enzymes for use in organic chemical processes. In our previous studies, a lipase from Rhizopus chinensis CCTCC M20102 was found to have very high ability of esterification of short-chain fatty acids with ethanol. In this study, we reported the cloning and expression of the lipase gene from R. chinensis in Pichia pastoris and characterization of the recombinant lipase. The lipase gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOX1 promoter. In the induction phase, two bands of 37 kDa and 30 kDa proteins could be observed. The amino-terminal analysis showed that the 37-kDa protein was the mature lipase (30 kDa) attached with 27 amino acid of the carboxy-terminal part of the prosequence (r27RCL). The pH and temperature optimum of r27RCL and mRCL were pH 8.5 and 40 °C, and pH 8 and 35 °C, respectively. The stability, reaction kinetics and effects of metal ions and other reagents were also determined. The chain length specificity of r27RCL and mRCL showed highest activity toward p-nitrophenyl hexanoate or glyceryl tricaproate (C6) and p-nitrophenyl acetate or glyceryl triacetate (C2), respectively. This property is quite rare among lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

17.
BackgroundPichia pastoris is a highly successful system for heterologous expression. During the induction stage, the ammonium ion released into the fermentation broth has a deep impact on cell growth and protein expression. The impact of NH4+ concentration on the expression of the Rhizopus oryzae lipase proAROL in P. pastoris was investigated.ResultsThe lipase activity under the optimum NH4+ concentration of 440 mmol/L reached 12,019 U/mL. Increased concentrations of NH4+ in the broth prevented the protease production, resulting in higher specific lipase activity in the supernatant. Furthermore, analysis of carbon metabolism and energy regeneration pattern revealed that under the definite NH4+ concentrations more carbon source (methanol) was consumed with surged AOX activity and then the higher energy and amino acid precursors demand for recombinant protein synthesis is compensated for by the TCA cycle.ConclusionsIn this study, the R. oryzae lipase activity reaches the highest level ever reported under optimized NH4+ concentration and the analysis of the carbon metabolism provides useful information for future optimization of protein production by P. pastoris in a molecular level.  相似文献   

18.
19.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   

20.
Catalase is a key antioxidant enzyme and has been implicated in many pathophysiological processes of human diseases. In a previous study, we developed a yeast-based expression system for recombinant human catalase (rhCAT), and proved its therapeutic effects for treating H1N1 virus-induced pneumonia. However, the preparation of rhCAT was insufficient for further research applications. Here, we describe a much more convenient construction strategy for rhCAT based on the Pichia pastoris GS115 strain in a 14 L bioreactor. Quantitative-PCR, Western blotting, and activity assay were used to demonstrate the stable and efficient high-level expression (1500 U/mL; 77% recovery) achieved by this newly developed simple two-step purification procedure. The rhCAT synthesized by this new procedure was applied to an H1N1-infected mouse model (doses of 50 and 100 kU/mice/day) to assess its capabilities for inducing immunomodulatory effects. The results showed that the rhCAT could restore the impaired phagocytosis, alleviate the induced reductions in spleen and thymus organ weights, and markedly reduce the lung tissue viral load, all in a dose-dependent manner. Thus, this study provides not only a simple method for large-scale preparation of active rhCAT, but also in vivo evidence of the recombinant protein's immunomodulatory activity which may have clinical applications in treating H1N1 or other viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号