首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

2.
Eicosapentaenoic acid (EPA), a well-known member of omega-3 fatty acids, is considered to have a significant health promoting role in the human body. It is an essential fatty acid as the human body lacks the ability to produce it in vivo and must be supplemented through diet. Microbial EPA represents a potential commercial source. GC/MS analyses confirmed that bacterial isolate 717, similar to Shewanella pacifica on the basis of 16S rRNA sequencing, is a potential high EPA producer. Two types of bioreactors, a Stirred Tank Reactor (STR) and an Oscillatory Baffled Reactor (OBR), were investigated in order to choose the optimum system for EPA production. The EPA production media was optimised through the selection of media components in a Plackett–Burman (PB) design of experiment followed by a Central Composite Design (CCD) to optimise the concentration of medium components identified as significant in the Plackett–Burman experiment. The growth conditions for the bioreactor, using artificial sea water (ASW) medium, were optimised by applying Response Surface Methodology (RSM). This optimisation strategy resulted in an increase in EPA from 33 mg/l (10 mg/g biomass), representing 8% of the total fatty acids at shake flask level, to 350 mg/l (46 mg/g biomass) representing 25% of the total fatty acids at bioreactor level. During this study the main effects and the interactions between the bioreactor growth conditions were revealed and a polynomial model of EPA production was generated. Chemostat experiments were performed to test the effect of growth rate and temperature on EPA production.  相似文献   

3.
When 8-bromoguanosine was incubated with cysteine at pH 7.4 and 37 °C, a previously unidentified product was formed as a major product in addition to guanosine. The product was identified as a cysteine substitution derivative of guanosine at the 8 position, 8-S-l-cysteinylguanosine. The reaction was accelerated under mildly basic conditions. The cysteine adduct of guanosine was fairly stable and decomposed with a half-life of 193 h at pH 7.4 and 37 °C. Similar results were observed for incubation of 8-bromo-2′-deoxyguanosine with cysteine. The results suggest that 8-bromoguanine in nucleosides, nucleotides, RNA, and DNA can react with thiols resulting in stable adducts.  相似文献   

4.
《Process Biochemistry》2010,45(4):441-445
The present research was aimed at inducing, in a post fermentative procedure (biotransformation) and by modifying cell permeability, glutathione (GSH) accumulation and subsequent release from cells of Saccharomyces cerevisiae. With the aim of limiting process costs, research considered the possibility of employing baker's yeasts (S. cerevisiae), inexpensive cells source available on the market, in comparison with a collection strain. The tested yeasts showed different sensitivity to the chemical/physical treatments performed to alter cell permeability. Modest effects were evidenced with Triton, active only on Zeus yeast samples (1.7 g GSH/l, near 60% of which in extracellular form). Lauroyl sarcosine showed an interesting action on GB Italy sample (2.8 g GSH/l, near 80% extracellular). Lyophilization evidenced good performance with Lievitalia yeast strain (2.9 g GSH/l, 90% extracellular). The possibility of obtaining GSH directly in extracellular form represents an interesting opportunity of reducing GSH production cost and furthering the range of application of this molecule.  相似文献   

5.
The developed tandem biotransformation process for the directional biosynthesis of a designed compound 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP) by Alternaria alternata S-f6 was systematically optimized. 28 °C of culture temperature and 120 rpm of rotary shaker speed were suitable for the accumulation of 4-TMP-DMEP. The production (i.e., 11.1 ± 1.4 mg/L) of 4-TMP-DMEP was remarkably improved by using an initial yeast extract concentration of 2.5 g/L. 2.0 g/L of Span 80 was beneficial for the 4-TMP-DMEP production (i.e., 25.0 ± 1.5 mg/L). Furthermore, the 4-TMP-DMEP production was remarkably improved by one pulse feeding of 50 mg/L of DMEP on day 6 and two pulse feedings of 40 mg/L of TMP on days 8 and 14 when its residual level was below 50 mg/L and 10 mg/L, respectively. The 4-TMP-DMEP production of 45.1 ± 1.6 mg/L was obtained in the fed-batch biotransformation process, which was enhanced by 726% and 256%, comparing to that (i.e., 5.4 ± 0.4 mg/L and 0.9 mg/L/day) obtained in the batch biotransformation before optimization.  相似文献   

6.
Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH2) and frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC ≤16 μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC50 = 80 ± 6 μM) and 2.2S (LC50 = 75 ± 5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC50 = 167 ± 8 μM for frenatin 2.1S and 169 ± 7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P < 0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.  相似文献   

7.
Glutathione (GSH)-deprived Dictyostelium discoideum accumulates methylglyoxal (MG) and reactive oxygen species (ROS) during vegetative growth. However, the reciprocal effects of the production and regulation of these metabolites on differentiation and cell motility are unclear. Based on the inhibitory effects of γ-glutamylcysteine synthetase (gcsA) disruption and GSH reductase (gsr) overexpression on aggregation and culmination, respectively, we overexpressed GSH-related genes encoding superoxide dismutase (Sod2), catalase (CatA), and Gcs, in D. discoideum. Wild-type KAx3 and gcsA-overexpressing (gcsAOE) slugs maintained GSH levels at levels of approximately 2.1-fold less than the reference GSH synthetase-overexpressing mutant; their GSH levels did not correlate with slug migration ability. Through prolonged KAx3 migration by treatment with MG and H2O2, we found that MG increased after the mound stage in this strain, with a 2.6-fold increase compared to early developmental stages; in contrast, ROS were maintained at high levels throughout development. While the migration-defective sod2- and catA-overexpressing mutant slugs (sod2OE and catAOE) decreased ROS levels by 50% and 53%, respectively, these slugs showed moderately decreased MG levels (36.2 ± 5.8 and 40.7 ± 1.6 nmol g−1 cells wet weight, P < 0.05) compared to the parental strain (54.2 ± 3.5 nmol g−1). Importantly, defects in the migration of gcsAOE slugs decreased MG considerably (13.8 ± 4.2 nmol g−1, P < 0.01) along with a slight decrease in ROS. In contrast to the increase observed in migrating sod2OE and catAOE slugs by treatment with MG and H2O2, the migration of gcsAOE slugs appeared unaffected. This behavior was caused by MG-triggered Gsr and NADPH-linked aldolase reductase activity, suggesting that GSH biosynthesis in gcsAOE slugs is specifically used for MG-scavenging activity. This is the first report showing that MG upregulates slug migration via MG-scavenging-mediated differentiation.  相似文献   

8.
In this paper, the pathways and kinetics for the production of diosgenin via biotransformation of Dioscorea zingiberensis C.H. Wright by Aspergillus oryzae CICC 2436 were analyzed. After 120 h of biotransformation at 30 °C, the concentration of diosgenin in the culture reached 36.87 ± 1.27 μmol/g raw herb, which was 21.2 times its initial concentration. A number of steroidal compounds were also isolated as minor products from the biotransformation, and one of these was identified as a novel compound named 3-O-β-d-glucopyranosyl (1  3) – β-d-glucopyranosyl (1  4) – β-d-glucopyranosyl-diosgenin (diosgenin-triglucoside). The biotransformation consisted of two stages: the release of steroids from the herb (accompanied by fungal growth) and hydrolysis of the steroids by glycosidases. Kinetic analysis and mathematical modelling showed that the process of biotransformation could be described by first-order kinetics under the condition of high Km/[S] values. It consisted of a cascade of consecutive and parallel reactions involving three kinds of enzymes, five steroid saponins and their sapogenin. The main hydrolysis reactions that led to the production of diosgenin were also discussed.  相似文献   

9.
Saccharum spontaneum is a wasteland weed consists of 45.10 ± 0.35% cellulose and 22.75 ± 0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91 ± 0.44 g/L (539.10 ± 0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85 ± 0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85 ± 0.07 IU/mL of filter paperase (FPase), 1.25 ± 0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56 ± 0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28 ± 0.5 °C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using “in-situ” entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm × 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45 ± 0.55 g/L (yield, 0.410 ± 0.010 g/g) and 21.66 ± 0.62 g/L (yield, 0.434 ± 0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85 ± 0.44 g/L, yield, 0.45 ± 0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.  相似文献   

10.
Secondary metabolites of lichens can be involved in production of chelates with heavy metals. We hypothesized that parietin plays important role in protection of photobiont cells in Xanthoria parietina from an excess of cadmium ions. Two types of X. parietina lichen thalli, natural with presence of secondary metabolite parietin (p+) as well as without parietin (p−) were exposed to different doses of cadmium (up to 300 μmol g−1 dw). Based on determination of the total and intracellular Cd-accumulation, ergosterol and thiobarbituric acid reactive substances (TBARS) content did not show statistically significant differences in the response of both types of thalli (p+ and p−). However, a stronger toxic effect of the highest Cd-dose on photosynthetic pigment content and chlorophyll a fluorescence was observed in the parietin-depleted thalli. The protective role of parietin against Cd excess was better supported and concluded from the differences observed in the production of non-protein thiol compounds (cysteine, glutathione and phytochelatins) involved in Cd detoxification. In the p+ thalli Cys content was stable but GSH content slightly decreased in the studied Cd range, while in the p− thalli these compounds were completely absent at high Cd doses. At Cd doses higher than 37.5 μmol Cd g−1 dw, toxic to both types of X. parietina thalli, Cys and GSH contents were significantly higher in p+ than in p− thalli. Also, the photobiont partner in the p+ thalli was better protected of the metal exposition, and able to produce phytochelatins (PCs) over the whole range of metal, while in the p− thalli the production was completely inhibited at 75 μmol Cd g−1 dw and higher concentrations, together with the inhibition of cysteine (Cys) and reduced glutathione (GSH) production. The obtained results indicate that the parietin layer is a natural barrier decreasing Cd access to algal cells in X. parietina. Comparison of PCs production appeared to be the most sensitive marker for estimation of Cd availability to photobiont in the symbiotic system.  相似文献   

11.
The hydroquinone glucoside arbutin is a plant derived compound medically applied due to its uroantiseptic activity. It also has skin whitening properties and thus is widely used in dermatology and cosmetology. Origanum majorana L. (Lamiaceae) is known to produce arbutin, however the content of the compound in cultivated plants is very variable and low. Since plant cell and tissue cultures are capable to perform specific biotransformation reactions including glucosylation, this investigation targeted the formation of arbutin from hydroquinone in agitated O. majorana shoot cultures. For this purpose different doses of hydroquinone (96, 144, 192, 288 and 384 mg/L of medium) were added to the culture flasks in one, two or three portions. Arbutin was qualitatively and quantitatively determined in methanol extracts from dry biomass and lyophilized media using HPLC-DAD. Cells of O. majorana shoot cultures efficiently converted hydroquinone into arbutin. The product was accumulated in the biomass and was not observed (or in trace amounts) in the medium samples. Different doses as well as portioning of the precursor had a significant impact on the biotransformation process. Arbutin accumulation increased from 0.23 ± 0.03 mg/g DW up to 52.6 ± 4.8 mg/g DW in the biomass. The highest product content was observed after the addition of 192 mg/L hydroquinone in three portions. The highest efficiency of the biotransformation process, i.e. 67.5 ± 5.2% was calculated for a dose of 96 mg/L precursor divided into three portions. After further optimization of the biotransformation process, O. majorana shoot cultures could serve as a rich source of arbutin.  相似文献   

12.
《Process Biochemistry》2014,49(5):807-812
Under the deacetylation of fungal endophyte Penicillium canescens, which was isolated from pigeon pea, a novel and highly efficient biotransformation method of astragalosides to astragaloside IV in Radix Astragali was investigated. After single factor tests of the biotransformation procedure, the optimum biotransformation conditions were confirmed as the liquid solid ratio 20:1, the biotransformation temperature 30 °C, time 36 h and pH 7, respectively. Final content of astragaloside IV in Radix Astragali reached 7.66 ± 0.44 mg/g, which was 5.51-fold to that of untreated one and contents of astragaloside I and astragaloside II significantly decreased. The immobilized Ca-alginate gel beads with P. canescens could be reused at least for 13 runs. This is the first report that fungal endophyte was applied for the biotransformation of astragalosides to astragaloside IV in Radix Astragali and this novel high-efficiency biotransformation method will be an alternative to enhance the content of astragaloside IV in Radix Astragali in commercial process.  相似文献   

13.
The reduction potential of a cell is related to its fate. Proliferating cells are more reduced than those that are differentiating, whereas apoptotic cells are generally the most oxidized. Glutathione is considered the most important cellular redox buffer and the average reduction potential (Eh) of a cell or organism can be calculated from the concentrations of glutathione (GSH) and glutathione disulfide (GSSG). In this study, triplicate groups of cod larvae at various stages of development (3 to 63 days post-hatch; dph) were sampled for analyses of GSSG/2GSH concentrations, together with activities of antioxidant enzymes and expression of genes encoding proteins involved in redox metabolism. The concentration of total GSH (GSH+GSSG) increased from 610±100 to 1260±150 μmol/kg between 7 and 14 dph and was then constant until 49 dph, after which it decreased to 810±100 μmol/kg by 63 dph. The 14- to 49-dph period, when total GSH concentrations were stable, coincides with the proposed period of metamorphosis in cod larvae. The concentration of GSSG comprised approximately 1% of the total GSH concentration and was stable throughout the sampling series. This resulted in a decreasing Eh from −239±1 to −262±7 mV between 7 and 14 dph, after which it remained constant until 63 dph. The changes in GSH and Eh were accompanied by changes in the expression of several genes involved in redox balance and signaling, as well as changes in activities of antioxidant enzymes, with the most dynamic responses occurring in the early phase of cod larval development. It is hypothesized that metamorphosis in cod larvae starts with the onset of mosaic hyperplasia in the skeletal muscle at approximately 20 dph (6.8 mm standard length (SL)) and ends with differentiation of the stomach and disappearance of the larval finfold at 40 to 50 dph (10–15 mm SL). Thus, metamorphosis in cod larvae seems to coincide with high and stable total concentrations of GSH.  相似文献   

14.
Thiol redox state (TRS) evaluation is mostly restricted to the estimation of GSH and GSSG. However, these TRS parameters can estimate the GSSG/GSH potential, which might be useful for indicating abnormalities in redox metabolism. Nonetheless, evaluation of the multiparameric nature of TRS is required for a more accurate assessment of its physiological role. The present protocol extends the partial assessment of TRS by current methodologies. It measures 15 key parameters of TRS by two modular subprotocols: one for the glutathione (GSH)- and cysteine (CSH)-based nonprotein (NP) thiols/mixed disulfides (i.e., GSH, GSSG, GSSNP, CSH, CSSNP, NPSH, NPSSNP, NPxSHNPSSNP, NPxSHNPSH), and the other for their protein (P) thiols/mixed disulfides (i.e., PSH, PSSG, PSSC, PSSNP, PSSP, NPxSHPSSNP). The protocol eliminates autoxidation of GSH and CSH (and thus overestimation of GSSG and CSSNP). Its modularity allows the determination GSH and GSSG also by other published specific assays. The protocol uses three assays; two are based on the photometric reagents 4,4′-dithiopyridine (DTP) and ninhydrin (NHD), and the third on the fluorometric reagent o-phthaldialdehyde (OPT). The initial assays employing these reagents have been extensively modified and redesigned for increased specificity, sensitivity, and simplicity. TRS parameter values and their standard errors are estimated automatically by sets of Excel-adapted algebraic equations. Protocol sensitivity for NPSH, PSH, NPSSNP, PSSP, PSSNP, CSH, CSSNP, PSSC, NPxSHNPSSNP, and NPxSHNPSH is 1 nmol –SH/CSH, for GSSNP 0.2 nmol, for GSH and GSSG 0.4 nmol, and for PSSG 0.6 nmol. The protocol was applied on human plasma, a sample of high clinical value, and can be also applied in any organism.  相似文献   

15.
《Small Ruminant Research》2008,76(2-3):128-134
Oxidative damage to sperm resulting from reactive oxygen species generated by the cellular components of semen is one of the main causes for the decline in motility and fertility of sperm during the freeze–thawing process. The aim of this study was thus to determine the effects of anti-oxidants on standard semen parameters, lipid peroxidation (LPO) and anti-oxidant activities after the freeze–thawing of ram semen. Ejaculates collected from four Akkaraman rams, were pooled and evaluated at 33 °C. Semen samples were diluted in a Tris-based extender containing the anti-oxidants glutathione (GSH) (5 mM), oxidized glutathione (GSSG) (5 mM) or cysteine (5 mM) and an extender containing no anti-oxidants (control), cooled to 5 °C and frozen in 0.25 ml French straws. Frozen straws were thawed individually for 20 s in a water bath (37 °C) for microscopic evaluation. The use of an extender supplemented with cysteine led to the highest (P < 0.01) post-thaw motility (61.0 ± 1.9%), compared to the other treatment groups. No significant differences were observed in viability, acrosome damage and total abnormalities, and following the hypo-osmotic swelling test (HOST), following supplementation with anti-oxidants after the thawing of the semen. Following the thawing process, the levels of malondialdehyde (MDA) did not change with the addition of anti-oxidants, compared to the control. The GSH level and glutathione peroxidase (GSH-PX) activity remained significantly higher upon the addition of GSH (3.33 ± 0.14 nmol/ml and 22.02 ± 1.27 IU/g protein) and GSSG (3.24 ± 0.08 nmol/ml and 20.17 ± 3.38 IU/g protein) compared to the other treatment (P < 0.001) groups. Only cysteine significantly elevated the activity of catalase (CAT, 842.40 ± 90.42 kU/l) following the freeze–thawing process. The Vitamin E (VitE) level was significantly higher, when compared to GSSG, cysteine and the control, when GSH (4.21 ± 0.20 mg/dl) was added to the freezing extender (P < 0.001). It could be concluded that future efforts aimed on improving the efficiency of cryopreservation of ram sperm should concentrate on the use of anti-oxidant additives. The results obtained provide a new approach to the cryopreservation of ram semen, and could positively contribute to intensive sheep production.  相似文献   

16.
The effect of metabolic inhibitor, 5-fluoro-2′-deoxyuridine (FUdR) on toxin production and the cell cycle of marine dinoflagellate, Alexandrium tamarense, was investigated. Compared to untreated cells, FUdR at 3 μM (p < 0.05) to 300 μM (p < 0.01) inhibited the cell proliferation and toxin production in a dose-dependent manner for A. tamarense cultured in modified T1 medium. FUdR at 203 μM resulted in cell cycle arrest at the S phase at day 4 and toxigenesis was inhibited after day 2. The toxin profiles of the FUdR-treated cultures were similar to those of the control culture. These results suggest that FUdR inhibits saxitoxin (STX) biosynthesis in the early stage of the pathway. This report is the first to demonstrate the inhibition of toxin production in A. tamarense by a nucleoside analog.  相似文献   

17.
《Process Biochemistry》2010,45(10):1632-1637
The production of pyruvate using biotransformation from dl-lactate has been recently drawn more and more attentions due to the wide applications of pyruvate in chemicals, drugs, and agrochemicals industries. In the current study, a strain ZJB-07166, which was capable of converting dl-lactate to pyruvate, was newly isolated and characterized and later identified as Serratia marcescens based on the morphology, physiological tests, ATB system and its 16S rDNA sequence. The strain S. marcescens ZJB-07166 was applied in biotransformation of dl-lactate to pyruvate and the detailed time courses for cultivation and biotransformation were investigated. The optimum nitrogen source and carbon source in the microorganism culture for production of lactate dehydrogenase were NH4Cl and dl-lactate, respectively. The optimum substrate concentration for biotransformation was around 40 mM and EDTA had an obvious stabilizing effect on pyruvate in biotransformation process. The pyruvate production concentration of 210 mM was achieved under the optimum conditions. These results demonstrated that the newly isolated S. marcescens ZJB-07166 was a promising strain for pyruvate production in industrial scale.  相似文献   

18.
There is a growing body of evidence that the ambr™ workstation from TAP Biosystems performs well in terms of helping to select appropriate clones for scale-up studies. Here we have investigated the physical characteristics of this microscale bioreactor system and found that these are quite different from those that exist in larger scale stirred bioreactors. For example, the flow regime in the ambr™ vessel is transitional rather than turbulent and the sparged air/oxygen superficial gas velocity is relatively very low whilst the specific power input is much higher (~400 W/m3) when compared to that used at larger scales (typically ~20 W/m3). This specific power input is necessary in order to achieve kLa values sufficiently high to satisfy the oxygen demand of the cells and control of dO2. In line with other studies, we find that the culture of CHO cells in a 15 mL ambr™ bioreactor gave similar cell growth and productivity to that achieved in a 5 L stirred bioreactor whilst the results from shake flasks were significantly different. Given the differences in physical characteristics between the ambr™ and larger stirred bioreactors, we suggest that this similarity in biological performance is due to their similar control capabilities and the ‘equivalence of the stress parameters’ across the scales when compared with shake flasks.  相似文献   

19.
The HPLC and spectral analyses of cysteine sulfoxides (CSOs), total polyphenols (TP), and total saponins revealed quantitative variations within the different organs of Allium nigrum L. A large accumulation of CSOs was detected in the bulb (0.367 mg/g fw), of TP in the leaf (116.05 mg CE/100 g fw), and of saponins in the root (19.38 mg/g dw). Phytochemical and chromatographical investigations of A. nigrum root extract led to the isolation of a spirostane-type glycoside or aginoside. The structure was elucidated by spectroscopic analysis (2D NMR, FABMS, HR-ESI-MS). The structure of the aginoside was identified as 25(R,S)-5α-spirostan-2α,3β,6β-trio1-3-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside. The highest content of aginoside, 2.9 mg/g dw, was detected in the root. The in vitro and in vivo antifungal activity of aginoside was evaluated for the first time against phytopathogens. This compound showed significant (P < 0.05) antifungal activity depending on the concentration.  相似文献   

20.
Performances of various bioreactors under different operating conditions were evaluated with respect to hexavalent chromium (Cr(VI)) reduction and COD removal. Continuous reactor studies were carried out with (i) aerobic suspended growth system, (ii) aerobic attached growth system, and (iii) anoxic attached growth system, using both synthetic and actual industrial wastewater. Arthrobacter rhombi-RE (MTCC7048), a Cr(VI) reducing strain enriched and isolated from chromium contaminated soil, was used in all the bioreactors for Cr(VI) biotransformation and COD removal. Aerobic and anoxic batch experiments were conducted to evaluate the bio-kinetic parameters. The bio-kinetic parameters for aerobic system were: μmax = 2.34/d, Ks = 190 mg/L (as COD), Ki = 3.8 mg/L of Cr(VI), and YT = 0.377. These parameters for anoxic conditions were: μmax = 0.57/d, Ks = 710 mg/L (as COD), Ki = 8.77 mg/L of Cr(VI), and YT = 0.13. Aerobic attached growth system, operated at a hydraulic retention time (HRT) of 24 h and an organic loading rate (OLR) of 3 kg/m3/d, performed better than aerobic suspended and the anoxic attached growth systems operated under identical conditions, while treating synthetic wastewater as well as industrial effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号