首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Free radical research》2013,47(11):881-893
Abstract

Oxysterols are oxidized species of cholesterol coming from exogenous (e.g. dietary) and endogenous (in vivo) sources. They play critical roles in normal physiologic functions such as regulation of cellular cholesterol homeostasis. Most of biological effects are mediated by interaction with nuclear receptor LXRα, highly expressed in the liver as well as in many other tissues. Such interaction participates in the regulation of whole-body cholesterol metabolism, by acting as “lipid sensors”. Moreover, it seems that oxysterols are also suspected to play key roles in several pathologies, including cardiovascular and inflammatory disease, cancer, and neurodegeneration. Growing evidence suggests that oxysterols may contribute to liver injury in non-alcoholic fatty liver disease. The present review focuses on the current status of knowledge on oxysterols’ biological role, with an emphasis on LXR signaling and oxysterols’ physiopathological relevance in NAFLD, suggesting new pharmacological development that needs to be addressed in the near future.  相似文献   

4.
Oxysterols, cholesterol homeostasis, and Alzheimer disease   总被引:5,自引:2,他引:3  
Aberrant cholesterol metabolism has been implicated in Alzheimer disease (AD) and other neurological disorders. Oxysterols and other cholesterol oxidation products are effective ligands of liver X activated receptor (LXR) nuclear receptors, major regulators of genes subserving cholesterol homeostasis. LXR receptors act as molecular sensors of cellular cholesterol concentrations and effectors of tissue cholesterol reduction. Following their interaction with oxysterols, activation of LXRs induces the expression of ATP-binding cassette, sub-family A member 1, a pivotal modulator of cholesterol efflux. The relative solubility of oxysterols facilitates lipid flux among brain compartments and egress across the blood-brain barrier. Oxysterol-mediated LXR activation induces local apoE biosynthesis (predominantly in astrocytes) further enhancing cholesterol re-distribution and removal. Activated LXRs invoke additional neuroprotective mechanisms, including induction of genes governing bile acid synthesis (sterol elimination pathway), apolipoprotein elaboration, and amyloid precursor protein processing. The latter translates into attenuated beta-amyloid production that may ameliorate amyloidogenic neurotoxicity in AD brain. Stress-induced up-regulation of the heme-degrading enzyme, heme oxygenase-1 in AD-affected astroglia may impact central lipid homeostasis by promoting the oxidation of cholesterol to a host of oxysterol intermediates. Synthetic oxysterol-mimetic drugs that activate LXR receptors within the CNS may provide novel therapeutics for management of AD and other neurological afflictions characterized by deranged tissue cholesterol homeostasis.  相似文献   

5.
6.
7.
Oxysterols, oxidized metabolites of cholesterol, are endogenous small molecules that regulate lipid metabolism, immune function, and developmental signaling. Although the cell biology of cholesterol has been intensively studied, fundamental questions about oxysterols, such as their subcellular distribution and trafficking pathways, remain unanswered. We have therefore developed a useful method to image intracellular 20(S)-hydroxycholesterol with both high sensitivity and spatial resolution using click chemistry and fluorescence microscopy. The metabolic labeling of cells with an alkynyl derivative of 20(S)-hydroxycholesterol has allowed us to directly visualize this oxysterol by attaching an azide fluorophore through cyclo-addition. Unexpectedly, we found that this oxysterol selectively accumulates in the Golgi membrane using a pathway that is sensitive to ATP levels, temperature, and lysosome function. Although previous models have proposed nonvesicular pathways for the rapid equilibration of oxysterols between membranes, direct imaging of oxysterols suggests that a vesicular pathway is responsible for differential accumulation of oxysterols in organelle membranes. More broadly, clickable alkynyl sterols may represent useful tools for sterol cell biology, both to investigate the functions of these important lipids and to decipher the pathways that determine their cellular itineraries.  相似文献   

8.
Mass spectrometric detection of cholesterol oxidation in bovine sperm   总被引:1,自引:0,他引:1  
We report on the presence and formation of cholesterol oxidation products (oxysterols) in bovine sperm. Although cholesterol is the most abundant molecule in the membrane of mammalian cells and is easily oxidized, this is the first report on cholesterol oxidation in sperm membranes as investigated by state-of-the-art liquid chromatographic and mass spectrometric methods. First, oxysterols are already present in fresh semen samples, showing that lipid peroxidation is part of normal sperm physiology. After chromatographic separation (by high-performance liquid chromatography), the detected oxysterol species were identified with atmospheric pressure chemical ionization mass spectrometry in multiple-reaction-monitoring mode that enabled detection in a broad and linear concentration range (0.05-100 pmol for each oxysterol species detected). Second, exposure of living sperm cells to oxidative stress does not result in the same level and composition of oxysterol species compared with oxidative stress imposed on reconstituted vesicles from protein-free sperm lipid extracts. This suggests that living sperm cells protect themselves against elevated oxysterol formation. Third, sperm capacitation induces the formation of oxysterols, and these formed oxysterols are almost completely depleted from the sperm surface by albumin. Fourth, and most importantly, capacitation after freezing/thawing of sperm fails to induce both the formation of oxysterols and the subsequent albumin-dependent depletion of oxysterols from the sperm surface. The possible physiological relevance of capacitation-dependent oxysterol formation and depletion at the sperm surface as well as the omission of this after freezing/thawing semen is discussed.  相似文献   

9.
PURPOSE OF REVIEW: Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS: According to their biophysical properties, which can be distinct from those of cholesterol, oxysterols can promote or inhibit the formation of membrane microdomains or lipid rafts. Oxysterols that inhibit raft formation are cytotoxic. The stereo-specific binding of cholesterol to sterol-sensing domains in cholesterol homeostatic pathways is not duplicated by oxysterols, and some oxysterols are poor substrates for the pathways that detoxify cells of excess cholesterol. The cytotoxic roles of oxysterols are, at least partly, due to a direct physical effect on membranes involved in cholesterol-induced cell apoptosis and raft mediated cell signaling. Oxysterols regulate cellular functions by binding to oxysterol binding protein and oxysterol binding protein-related proteins. Oxysterol binding protein is a sterol-dependent scaffolding protein that regulates the extracellular signal-regulated kinase signaling pathway. According to a recently solved structure for a yeast oxysterol binding protein-related protein, Osh4, some members of this large family of proteins are likely sterol transporters. SUMMARY: Given the association of some oxysterols with atherosclerosis, it is important to identify the mechanisms by which their association with cell membranes and intracellular proteins controls membrane structure and properties and intracellular signaling and metabolism. Studies on oxysterol binding protein and oxysterol binding protein-related proteins should lead to new understandings about sterol-regulated signal transduction and membrane trafficking pathways in cells.  相似文献   

10.
Under pathological conditions, cholesterol oxidation products (oxysterols) appear in enhanced concentration in blood and cerebrospinal fluid, which leads to cytotoxic effect, especially in central nervous system. However, the mode of action of oxysterols on the membrane level has not been fully resolved. In this paper we have investigated the interaction between 7α- hydroxycholesterol, 7α-OH (one of the most abundant oxysterol in human body) and two major membrane lipids: sphingomyelin, SM (basic component of lipid rafts and nerve membrane) and 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, POPC (main phospholipid of mammalian cell membranes). 7α-OH/SM mixtures may mimic pathologically changed lipid raft (ordered phase, LO) while the SM/POPC system can model its surrounding (liquid-disordered phase, Lα). For our study, the Langmuir monolayer technique (based on registration of the surface pressure/area, π/A isotherms), complemented with surface visualization technique (Brewster angle microscopy, BAM) and theoretical calculations, have been employed. The observed affinity of 7α-OH to SM, which appears to be stronger than in cholesterol/SM system, indicates that cholesterol might be partially replaced in lipid rafts by its oxidized derivative. Its incorporation significantly increases rigidity of the system in relation to normal (cholesterol-containing) raft, which can disturb its proper functioning. On the other hand, the poor effect of this oxysterol on the raft's environment was observed.  相似文献   

11.
12.
13.
Side chain oxysterols exert cholesterol homeostatic effects by suppression of sterol regulatory element-binding protein maturation and promoting degradation of hydroxymethylglutaryl-CoA reductase. To examine whether oxysterol-membrane interactions contribute to the regulation of cellular cholesterol homeostasis, we synthesized the enantiomer of 25-hydroxycholesterol. Using this unique oxysterol probe, we provide evidence that oxysterol regulation of cholesterol homeostatic responses is not mediated by enantiospecific oxysterol-protein interactions. We show that side chain oxysterols, but not steroid ring-modified oxysterols, exhibit membrane expansion behavior in phospholipid monolayers and bilayers in vitro. This behavior is non-enantiospecific and is abrogated by increasing the saturation of phospholipid acyl chain constituents. Moreover, we extend these findings into cultured cells by showing that exposure to saturated fatty acids at concentrations that lead to endoplasmic reticulum membrane phospholipid remodeling inhibits oxysterol activity. These studies implicate oxysterol-membrane interactions in acute regulation of sterol homeostatic responses and provide new insights into the mechanism through which oxysterols regulate cellular cholesterol balance.  相似文献   

14.
Oxysterols are potent signalling lipids that directly bind liver X receptors (LXRs) and a subset of oxysterol binding protein (OSBP) related proteins (ORPs). It is relatively well established that the oxysterol-regulated function of LXRs is to control the expression of genes involved in reverse cholesterol transport, catabolism of cholesterol, and lipogenesis. In contrast, the mechanisms by which oxysterols and ORPs affect cellular lipid metabolism have remained poorly understood. In this review, we summarize the information available on function of the ORPs and compare the two families of proteins binding oxysterol to demonstrate the different responses that similar lipids can elicit within cells. The other focus is on the membrane targeting determinants and the protein interaction partners of ORPs, which provide interesting clues to the mode(s) of ORP action. Specifically, we suggest a model in which a general property of ORPs is to function at membrane contact sites, specialized zones of communication between two different organelles.  相似文献   

15.
The objective of this study was to ascertain the impact of aging and Alzheimer's disease (AD) on brain cholesterol (CH), CH precursors, and oxysterol homeostasis. Altered CH metabolism and up-regulation of heme oxygenase-1 (HO-1) are characteristic of AD-affected neural tissues. We recently determined that HO-1 over-expression suppresses total CH levels by augmenting liver X receptor-mediated CH efflux and enhances oxysterol formation in cultured astroglia. Lipids and proteins were extracted from postmortem human frontal cortex derived from subjects with sporadic AD, mild cognitive impairment (MCI), and no cognitive impairment ( n  = 17 per group) enrolled in the Religious Orders Study, an ongoing clinical-pathologic study of aging and AD. ELISA was used to quantify human HO-1 protein expression from brain tissue and gas chromatography–mass spectrometry to quantify total CH, CH precursors, and relevant oxysterols. The relationships of sterol/oxysterol levels to HO-1 protein expression and clinical/demographic variables were determined by multivariable regression and non-parametric statistical analyses. Decreased CH, increased oxysterol and increased CH precursors concentrations in the cortex correlated significantly with HO-1 levels in MCI and AD, but not no cognitive impairment. Specific oxysterols correlated with disease state, increasing neuropathological burden, neuropsychological impairment, and age. A model featuring compensated and de-compensated states of altered sterol homeostasis in MCI and AD is presented based on the current data set and our earlier in vitro work.  相似文献   

16.
Side-chain oxysterols produced from cholesterol either enzymatically or non-enzymatically show various bioactivities. Lecithin-cholesterol acyltransferase (LCAT) esterifies the C3-hydroxyl group of these sterols as well as cholesterol. Lysosomal phospholipase A2 (LPLA2) is related to LCAT but does not catalyze esterification of cholesterol. First, esterification of side-chain oxysterols by LPLA2 was investigated using recombinant mouse LPLA2 and dioleoyl-PC/sulfatide/oxysterol liposomes under acidic conditions. TLC and LC-MS/MS showed that the C3 and C27-hydroxyl groups of 27-hydroxycholesterol could be individually esterified by LPLA2 to form a monoester with the C27-hydroxyl preference. Cholesterol did not inhibit this reaction. Also, LPLA2 esterified other side-chain oxysterols. Their esterifications by mouse serum containing LCAT supported the idea that their esterifications by LPLA2 occur at the C3-hydroxyl group. N-acetylsphingosine (NAS) acting as an acyl acceptor in LPLA2 transacylation inhibited the side-chain oxysterol esterification by LPLA2. This suggests a competition between hydroxycholesterol and NAS on the acyl-LPLA2 intermediate formed during the reaction. Raising cationic amphiphilic drug concentration or ionic strength in the reaction mixture evoked a reduction of the side-chain oxysterol esterification by LPLA2. This indicates that the esterification could progress via an interfacial interaction of LPLA2 with the lipid membrane surface through an electrostatic interaction. The docking model of acyl-LPLA2 intermediate and side-chain oxysterol provided new insight to elucidate the transacylation mechanism of sterols by LPLA2. Finally, exogenous 25-hydroxycholesterol esterification within alveolar macrophages prepared from wild-type mice was significantly higher than that from LPLA2 deficient mice. This suggests that there is an esterification pathway of side-chain oxysterols via LPLA2.  相似文献   

17.
Oxysterols are present in mammalian brain at ng/g–μg/g levels while cholesterol is present at the mg/g level. This makes oxysterol analysis of brain challenging. In an effort to meet this challenge we have developed, and validated, an isolation method based on solid phase extraction and an analytical protocol involving oxidation/derivatisation (i.e., charge-tagging) followed by nano-flow liquid chromatography (nano-LC) combined with tandem mass spectrometry utilising multi-stage fragmentation (MSn). The oxidation/derivatisation method employed improves detection limits by two orders of magnitude, while nano-LC–MSn provides separation of isomers and allows oxysterol quantification. Using this method 13 different oxysterols have been identified in rat brain including 24S-hydroxycholesterol, 24S,25-epoxycholesterol and 7α,26-dihydroxycholest-4-en-3-one. The level of 24S-hydroxycholesterol in rat brain was determined to be 20.3 ± 3.4 μg/g and quantitative estimates were made for the other oxysterols identified. The presence of a large excess of cholesterol over oxysterol in brain raises the problem of autoxidation during sterol isolation and sample preparation. Thus, in parallel to identification studies, the degree of cholesterol autoxidation occurring during sterol isolation and analysis has been evaluated with the aid of [2H7]-labelled cholesterol and cholesterol autoxidation products identified.  相似文献   

18.
Oxysterols are oxygenated derivatives of cholesterol that are intermediates in cholesterol excretion pathways. They may also be regarded as transport forms of cholesterol and introduction of an additional hydroxyl group facilitates flux of cholesterol across cell membranes and the blood-brain barrier. According to current concepts, oxysterols are also mediating a number of cholesterol-induced metabolic effects. The recent discovery of nuclear receptors with an affinity for oxysterols has given support to this concept. Nuclear receptors such as liver X receptor alpha do have a role in cholesterol homeostasis, but there is still only indirect evidence that oxysterols are the physiological ligands. In this overview we report some recent advancements in our knowledge about the origin and metabolic fate of the quantitatively most important oxysterols occurring in the circulation. In addition, we discuss the possibility that some of these oxysterols may activate liver X receptors and regulate cholesterol homeostasis.  相似文献   

19.
Shan H  Pang J  Li S  Chiang TB  Wilson WK  Schroepfer GJ 《Steroids》2003,68(3):221-233
Oxygenated derivatives of cholesterol have important functions in many biochemical processes. These oxysterols are difficult to study because of their low physiological concentrations, the facile formation of cholesterol autoxidation artifacts, and lack of information on their chromatographic behavior. Focusing on metabolites and autoxidation products of cholesterol, we have documented the chromatographic mobilities of 35 oxysterols under a variety of conditions: eight solvent systems for thin-layer chromatography on silica gel, several mobile phases for reversed-phase high-performance liquid chromatography (HPLC), and two types of stationary phase for capillary gas chromatography (GC) using trimethylsilyl derivatives. Notable differences in selectivity could be obtained by modifying the stationary or mobile phases. Separations of oxysterol pairs isomeric at side-chain carbons or C-7 were achieved on normal-phase, reversed-phase, chiral, or silver-ion HPLC columns. Chromatographic behavior is also described for side-chain hexadeuterated and heptafluorinated oxysterols, which are useful as standards in isotope dilution analyses and autoxidation studies, respectively. The overall results are relevant to many problems of oxysterol analysis, including the initial separation of oxysterols from cholesterol, determination of highly polar and nonpolar oxysterols, separation of isomeric pairs, selection of derivatization conditions for GC analysis, and quantitation of the extent of cholesterol autoxidation.  相似文献   

20.
Liver X receptors (LXRs) are nuclear receptors that play crucial roles in lipid metabolism in vivo and are activated by oxysterol ligands in vitro. The identity of the ligand that activates LXRs in vivo is uncertain. Here we provide two lines of evidence that oxysterols are LXR ligands in vitro and in vivo. First, overexpression of an oxysterol catabolic enzyme, cholesterol sulfotransferase, inactivates LXR signaling in several cultured mammalian cell lines but does not alter receptor response to the nonsterol agonist T0901317. Adenovirus-mediated expression of the enzyme in mice prevents dietary induction of hepatic LXR target genes by cholesterol but not by T0901317. Second, triple-knockout mice deficient in the biosynthesis of three oxysterol ligands of LXRs, 24S-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol, respond to dietary T0901317 by inducing LXR target genes in liver but show impaired responses to dietary cholesterol. We conclude that oxysterols are in vivo ligands for LXR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号