共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathalaimuthu Baranitharan Saud Alarifi Saad Alkahtani Daoud Ali Kuppusamy Elumalai Jeganathan Pandiyan Kaliyamoorthy Krishnappa Mohan Rajeswary Marimuthu Govindarajan 《Saudi Journal of Biological Sciences》2021,28(1):148-156
Globally, the farmers are struggling with polyphagous insect pest, and it is the number one enemy of agri-products, which made plenty of economic deterioration. Spodoptera litura and Helicoverpa armigera are the agronomically important polyphagous pests. Most of the farmers are predominately dependent on synthetic chemical insecticides (SCIs) for battle against polyphagous pets. As a result, the broad spectrum usage of SCIs led a lot of detrimental outcomes only inconsequently the researchers search the former-friendly phyto-pesticidal approach. In the present investigation, leaf ethanol extract (LEE) and silver nanoparticles (AgNPs) of A. catechu (Ac) were subjected to various spectral (TLC, CC, UV, FTIR, XRD and SEM) analyses. Larval and pupal toxicity of A. catechu Ac-LEE and Ac-AgNPs were tested against selected polyphagous insect pests. The significant larval and pupal toxicity were experimentally proven, and the highest toxicity noticed in AgNPs than Ac-LEE. The larval and pupal toxicity of Ac-AgNPs tested against S. litura and H. armigera LC50/LC90 values were 71.04/ 74.78, 85.33/ 88.91 µg/mL and 92.57/ 96.21 and 124.43/ 129.95 µg/mL respectively. Ac-AgNPs could be potential phyto-pesticidal effectiveness against selected polyphagous insect pests. In globally, it is significantly sufficient ratification giving towards the prevention of many unauthorized SCPs. 相似文献
2.
《Saudi Journal of Biological Sciences》2020,27(11):2917-2928
The entomofaunal survey and its toxicity of Blumea mollis (Asteraceae) leaf aqueous extract-mediated (Bm-LAE) silver nanoparticles (AgNPs) were assessed against selected human vector mosquitoes (HVMs). A total of 1800 individuals of 29 species belongs to 7 genera were identified. Month-wise and Genus-wise abundance of HVMs larval diversity were calculated and one-way ANOVA statistically analyzed the average physico-chemical characteristics. The relationship between physicochemical characteristics and HVMs larvae in KWS was interpreted. The total larval density and container index were 23530.18 and 1961.85 examined against 10 different containers. Various spectroscopic and microscopic investigation characterized Bm-AgNPs. The Bm- AgNPs tested against HVMs larvae, the predominant LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 μg/mL were observed on An. subpictus Cx. vishnui and Ae. vittatus, respectively. The findings of this investigation, improperly maintained drainages, containers and unused things in study sites, are engaged to HVMs development. This will be essential for designing and implementing HVMs control. The larval toxic potentiality of Bm- AgNPs had a prompt, inexpensive and compelling synthesis of multi-disperse action against HVMs. 相似文献
3.
《Saudi Journal of Biological Sciences》2020,27(10):2551-2562
Nanotechnology is evolving as a significant discipline of research with various applications. It includes the materials and their applications having one dimension in the range of 1–100 nm. Many chemical and physical protocol have been utilized for the nanoparticles (NPs) fabrication. These protocols are costly, hazardous and consumes high energy. Thus, researchers are inclined towards biological synthesis of NPs using plant and or herbal extract as these methods are simple, sustainable, ecofriendly and cost-effective. Flower is an important part of plants, and contained several phytochemicals such as flavonoids, terpenoids, coumarins, sterol and xanthones which acts as an important precursor for NPs synthesis. These compounds acted as reducing as well as stablishing agent during fabrication processes. They have been thoroughly characterized by various techniques. The fabricated NPs have shown potential antimicrobial activity against bacterial and fungal infections. They have been also used as potential therapeutic agent for human breast cancer, gastric adenocarcinoma cell, colorectal adenocarcinoma cell and pancreas ductal adenocarcinoma cells. Overall, the aim of this review article to facilitates the recent understanding of flower-mediated NPs fabrication (a sustainable and ecofriendly resource), their application in different disciplines and challenges. 相似文献
4.
Najlaa S. Al-Radadi 《Saudi Journal of Biological Sciences》2022,29(5):3848-3870
Nanoparticles and its green synthesis with plants have become an important field of nanoscience due it is great benefits provided to humanity through it and its cost effective, least harm to humans and the environment also, it offering a lot of application in biomedical research, diagnostics, and medicine as well as, drug manufacturing, improvement, or drug discovery. In this work, I focused on green synthesis nanoparticles with antioxidant involve in plants and the method for preparing them also the factors on which the extraction process depends on, spectroscopic techniques like UV–Visible, (TEM), (XRD), (IR), (EDX), (SEM), (HPLC), and zeta potential are use here. 相似文献
5.
Two novel colored fluorescent proteins were cloned and biophysically characterized from zooxanthellate corals (Anthozoa). A cyan fluorescent protein derived from the coral Montastrea cavernosa (mcCFP) is a trimeric complex with strong blue-shifted excitation and emission maxima at 432 and 477 nm, respectively. The native complex has a fluorescence lifetime of 2.66 ± 0.01 ns and an inferred absolute quantum yield of 0.385. The spectroscopic properties of a green fluorescent protein cloned from Meandrina meandrites (mmGFP) resemble the commercially available GFP derived originally from the hydrozoan Aequorea victoria (avGFP). mmGFP is a monomeric protein with an excitation maximum at 398 nm and an emission maximum at 505 nm, a fluorescence lifetime of 3.10 ± 0.01 ns and an absolute quantum yield of 0.645. Sequence homology with avGFP and the red fluorescent protein (DsRed) indicates that the proteins adopt the classic β-barrel configuration with 11 β-strands. The three amino acid residues that comprise the chromophore are QYG for mcCFP and TYG for mmGFP, compared with SYG for avGFP. A single point mutation, Ser-110 to Asn, was introduced into mmGFP by random mutagenesis. Denaturation and refolding experiments showed that the mutant has reduced aggregation, increased solubility and more efficient refolding relative to the wild type. Time-resolved emission lifetimes and anisotropies suggest that the electronic structure of the chromophore is highly dependent on the protonation state of adjoining residues. 相似文献
6.
The synthesis of Zinc oxide nanoparticles using a plant-mediated approach is presented in this paper. The nanoparticles were successfully synthesized using the Nitrate derivative of Zinc and plant extract of the indigenous medicinal plant Cayratia pedata. 0.1 mM of Zn (NO3)2.6H2O was made to react with the plant extract at different concentrations, and the reaction temperature was maintained at 55 °C, 65 °C, and 75 °C. The yellow coloured paste obtained was wholly dried, collected, and packed for further analysis. In the UV visible spectrometer (UV–Vis) absorption peak was observed at 320 nm, which is specific for Zinc oxide nanoparticles. The characterization carried out using Field Emission Scanning Electron Microscope (FESEM) reveals the presence of Zinc oxide nanoparticles in its agglomerated form. From the X-ray diffraction (XRD) pattern, the average size of the nanoparticles was estimated to be 52.24 nm. Energy Dispersive Spectrum (EDX) results show the composition of Zinc and Oxygen, giving strong energy signals of 78.32% and 12.78% for Zinc and Oxygen, respectively. Fourier Transform - Infra-Red (FT-IR) spectroscopic analysis shows absorption peak of Zn–O bonding between 400 and 600 cm?1. The various characterization methods carried out confirm the formation of nano Zinc oxide. The synthesized nanoparticles were used in the immobilization of the enzyme Glucose oxidase. Relative activity of 60% was obtained when Glucose oxidase was immobilized with the green synthesized ZnO nanoparticles. A comparative study of the green synthesized with native ZnO was also carried out. This green method of synthesis was found to be cost-effective and eco-friendly. 相似文献
7.
Andrew M. Thompson Adrian Blaser Brian D. Palmer Robert F. Anderson Sujata S. Shinde Delphine Launay Eric Chatelain Louis Maes Scott G. Franzblau Baojie Wan Yuehong Wang Zhenkun Ma William A. Denny 《Bioorganic & medicinal chemistry letters》2017,27(11):2583-2589
As part of a quest for backups to the antitubercular drug pretomanid (PA-824), we investigated the unexplored 6-nitro-2,3-dihydroimidazo[2,1-b][1,3]-thiazoles and related -oxazoles. The nitroimidazothiazoles were prepared in high yield from 2-bromo-4-nitroimidazole via heating with substituted thiiranes and diisopropylethylamine. Equivalent examples of these two structural classes provided broadly comparable MICs, with 2-methyl substitution and extended aryloxymethyl side chains preferred; albeit, S-oxidised thiazoles were ineffective for tuberculosis. Favourable microsomal stability data for a biaryl thiazole (45) led to its assessment in an acute Mycobacterium tuberculosis mouse model, alongside the corresponding oxazole (48), but the latter proved to be more efficacious. In vitro screening against kinetoplastid diseases revealed that nitroimidazothiazoles were inactive versus leishmaniasis but showed interesting activity, superior to that of the nitroimidazooxazoles, against Chagas disease. Overall, “thio-delamanid” (49) is regarded as the best lead. 相似文献
8.
Roua Alsubki Hajera Tabassum Manal Abudawood Ali A. Rabaan Sarah F. Alsobaie Sabah Ansar 《Saudi Journal of Biological Sciences》2021,28(4):2102-2108
The present study focused on the green synthesis of silver nanoparticles from Coriander sativum (CS) containing structural polymers, phenolic compounds and glycosidic bioactive macromolecules. Plant phenolic compounds can act as antioxidants, lignin, and attractants like flavonoids and carotenoids. Henceforth, silver nanoparticles (AgNPs) were prepared extracellularly by the combinatorial action of stabilizing and reduction of the CS leaf extract. The biologically synthesized CS-AgNPs were studied by UV-spectroscopy, zeta potential determination, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis to characterize and confirm the formation of crystalline nanoparticles. The synthesized nanoparticles demonstrated strong antimicrobial activity against all microbial strains examined with varying degrees. The scavenging action on free radicals by CS-AgNPs showed strong antioxidant efficiency with superoxide and hydroxyl radicals at different concentrations as compared with standard ascorbic acid. The presence of in vitro anticancer effect was confirmed at different concentrations on the MCF-7 cell line as revealed with decrease in cell viability which was proportionately related to the concentration of CS-AgNPs illustrating the toxigenic nature of synthesized nanoparticles on cancerous cells. 相似文献
9.
A green and efficient straightforward tactic for the one-pot regioselective synthesis of novel 10,10-dimethyl-9,10,11,11a-tetrahydro-6H-spiro[chromeno[4,3–b]chromene-7,3′-indoline]-2′,6,8 (7aH) -triones (4a-n) in one-pot modus has been established using eco-friendly p-toluenesulphonic acid as catalyst. Among the solvents that were used for synthesis, 4a-n were suitably synthesized with maximum yield (90–98%) in water. We avoided column purification and the formed by-product in the process is environmental-friendly. Hence, this reaction may consider as an astonishing piece work in this study, why because, the reaction mechanism that depends on the nature of the group attached to the isatin ring nitrogen atom. The main advantage of this protocol includes short reaction time, good yield, easy to work-up, practical simplicity, high regioselectivity and reduced pollutant, cost and avoids tedious purification. These pharmaceutically important compounds (4a-n) were recognized for their alkaline phosphatase inhibition and prostate cancer medication capabilities. The selective activity relation between alkaline phosphatase and prostate cancer was unveiled through the interaction of 4a-n to Human alkaline phosphatase (PDB ID: 1EW2). 相似文献
10.
Sengani Manimegalai Vijayarangan Devi Rajeswari Ranganathan Parameswari Marcello Nicoletti Saud Alarifi Marimuthu Govindarajan 《Saudi Journal of Biological Sciences》2022,29(4):2131-2137
Biologically inspired synthesis of nanoparticles was found to be more attractive in metal nanoparticle synthesis. The present study reported an in-situ biogenic synthesis of silver nanoparticles (AgNPs) using Solanum trilobatum aqueous leaf extract. On this basis, the aqueous leaf extract of S. trilobatum acted as a reducing agent and stabilizing agent to synthesize highly stable AgNPs at ambient temperature. Eventually, the synthesized and stabilized AgNPs surface plasmon resonance was near 430 nm through a UV–visible (UV–vis) spectrophotometer. Here, the stability of the silver colloids monitored through zeta potential and mean particle size was evaluated through diffraction light scattering (DLF). Further, the average particle size was found to be 27.6 nm and spherical, confirmed with transmission electron microscopy (TEM). Also, colloidal AgNPs and aqueous extract are found to be rich sources of antioxidants and exhibit higher free radical scavenging ability. Thus, efficient inhibition with COX1 and COX2 enzymes and the protective effect with human red blood cell (HRBC) membrane stability showed significant results. These features are promising, suggesting the possibility of the AgNPs to be useful to disease-modifying for treating inflammatory disorders and associated complications. 相似文献
11.
12.
13.
The global burden of vector-borne diseases accounts for more than 17% of infectious diseases in humans. Rapid global expansion of previously obscure pathogens, such as Zika and chikungunya viruses in recent years highlights the importance of understanding how anthropogenic changes influence emergence and spillover of vector-borne diseases. Deforestation has been identified as one anthropogenic change that influences vector-borne disease prevalence, although contrasting pictures of the effects of deforestation on vector-borne disease transmission have been reported. These conflicting findings are likely attributable to the inherent complexity of vector-borne disease systems, which involve diverse groups of vectors, hosts and pathogens, depending on geography. The current study represents a quantitative exploration of the link between deforestation and mosquitoes, the most important common constituents of vector-borne disease systems. Analysis of data compiled from published field studies for 87 mosquito species from 12 countries revealed that about half of the species (52.9%) were associated with deforested habitats. Of these species that are favored by deforestation, a much larger percentage (56.5%) are confirmed vectors of human pathogens, compared to those negatively impacted by deforestation (27.5%). Moreover, species that serve as vectors of multiple human pathogens were all favored by deforestation, including Anopheles bancroftii, Anopheles darlingi, Anopheles farauti, Anopheles funestus s.l., Anopheles gambiae s.l., Anopheles subpictus, Aedes aegypti, Aedes vigilax, Culex annulirostris, and Culex quinquefasciatus. Our quantitative analysis of vector and non-vector species, demonstrates that the net effect of deforestation favors mosquitoes that serve as vectors of human disease, while the obverse holds true for non-vectors species. These results begin to unify our understanding of the relationship between deforestation and vector mosquitoes, an important step in quantifying how land use change, specifically deforestation, affects human risk of vector-borne disease. 相似文献
14.
Steiger DM Johnson P Hilbert DW Ritchie S Jones D Laurance SG 《Journal of vector ecology》2012,37(1):69-76
Emerging infectious diseases are considered to be a growing threat to human and wildlife health. Such diseases might be facilitated by anthropogenic land-use changes that cause novel juxtapositions of different habitats and species and result in new interchanges of vectors, diseases, and hosts. To search for such effects in tropical Australia, we sampled mosquito populations across anthropogenic disturbance gradients of grassland, artificial rainforest edge, and rainforest interior. From >15,000 captured mosquitoes, we identified 26 species and eight genera. Surprisingly, there was no significant difference in community composition or species richness between forest edges and grasslands, but both differed significantly from rainforest interiors. Mosquito species richness was elevated in grasslands relative to the rainforest habitats. Seven species were unique to grasslands and edges, with another 13 found across all habitats. Among the three most abundant species, Culex annulirostris occurred in all habitat types, whereas Verrallina lineata and Cx. pullus were more abundant in forest interiors. Our findings suggest that the creation of anthropogenic grasslands adjacent to rainforests may increase the susceptibility of species in both habitats to transmission of novel diseases via observable changes and mixing of the vector community on rainforest edges. 相似文献
15.
Mihaela Kavran Igor Pajović Dušan Petrić Aleksandra Ignjatović-Ćupina Nedeljko Latinović Miomir Jovanović Stephen Alexander Quarrie Marija Zgomba 《Entomologia Experimentalis et Applicata》2020,168(2):148-157
Aquatain® mosquito formulation (AMF) is a silicone-based monomolecular film, which has recently been approved for use in the European Union. The physical mode of action based on lowering water surface tension prevents mosquito larvae/pupae respiration. Additionally, AMF disables gravid females from landing on the water surface and obstructs the natural oviposition process. Due to multistage effects on mosquitoes, AMF could be a product of choice for defined water body and container breeders such as Culex pipiens L. complex, principal vector of West Nile virus in Europe, and the invasive Aedes albopictus (Skuse) (both Diptera: Culicidae), vector of dengue and chikungunya viruses. The primary objectives of this study were to evaluate the efficacy of AMF, to determine the susceptibility of the immature forms of C. pipiens and A. albopictus, and the persistence/longevity of the product to suppress the eclosion of adults. AMF achieved high mortality rates of juvenile A. albopictus and C. pipiens under laboratory conditions. However, in the field C. pipiens larvae showed higher susceptibility to AMF than A. albopictus. Pupae of the two mosquito species were highly susceptible to the presence of AMF. When C. pipiens juveniles were exposed to AMF in the wild, effects lasted for 21 days in densely covered water bodies and 56 days in water recipients with less vegetation. In both breeding sites, natural habitat and artificial water recipient, the two mosquito species with high impact on public health in Europe could successfully be suppressed by application of AMF (1 ml m−2). 相似文献
16.
Arifa Shafqat Nabil Al-Zaqri Arifa Tahir Ali Alsalme 《Saudi Journal of Biological Sciences》2021,28(3):1739-1749
With the ever-increasing demand of plastics in the world and their consequent disastrous effects on environment, a suitable environmental-friendly substitute like bioplastics/biodegradable plastics is the need time. This study centers on green-production of a variety of bioplastic samples from (1) banana peel starch (BPP) and (2) a composite of banana peel starch, cornstarch and rice starch (COM) with varying amounts of potato peel powder and wood dust powder as fillers, respectively. Two different plasticizers – Glycerol and Sorbitol – have been utilized separately and in a 1:1 combination. A total of 12 samples of each of two types of bioplastics were made using multiple amounts and combinations of the fillers and plasticizers, to test the differences in the physical and chemical characteristics (moisture content, absorption of water, solubility in water, solubility in alcohol, biodegradation in soil, tensile strength, Young’s modulus and FT-IR) of the produced samples due to their different compositions. The differences in the properties of the bioplastic samples produced make them suitable for usage in many different applications. All 24 of the samples produced were synthesized using natural and environmentally safe raw material and showed biodegradation, thus proving to be a good alternative to the conventional plastics. 相似文献
17.
Oxidative-stress induces inflammatory diseases and infections caused by drug-resistant microbial strains are on the rise necessitating the discovery of novel small-molecules for intervention therapy. The current study presents an effective and new green protocol for the synthesis of thiophene-appended pyrazoles through 3 + 2 annulations method. Chalcones 3(a-g) were prepared from 5-chloro-2-acetylthiophene and aromatic aldehydes by Claisen-Schmidt approach. The reaction of chalcones 3(a-g) with phenylhydrazine hydrochlorides 4(a-b) in acetic acid (30%) medium and also with freshly prepared citrus extract medium under reflux conditions produced the thiophene appended pyrazoles 5(a-l) in moderate yields. Structures of synthesized new pyrazoles were confirmed by spectral studies, elemental analysis and single crystal X-ray diffraction studies. Further, preliminary assessment of the anti-inflammatory properties of the compounds showed that, amongst the series, compounds 5d, 5e and 5l have excellent anti-inflammatory activities. Further, compounds 5c, 5d, 5g, and 5i exhibited excellent DPPH radical scavenging abilities in comparison with the standard ascorbic acid. Furthermore, using detailed structural modeling and docking efforts, combined with preliminary SAR, we show possible structural and chemical features on both the small-molecules and the protein that might contribute to the binding and inhibition. 相似文献
18.
19.
Soft biofunctional and biocompatible interfaces on solids designed by the deposition of ultrathin soft polymer films or supported membranes have numerous scientific and practical applications. These include the immobilization of glycolipids, membrane receptors and proteins to generate models of cell and tissue surfaces. Powerful surface-sensitive techniques can be applied to study protein-protein recognition processes at membranes and the control of cell adhesion by the interplay of specific 'lock-and-key' forces and universal interfacial forces. Potential practical applications include the design of smart biosensors based on electro-optical devices and the fabrication of biofunctional surfaces for the stimulation of cell proliferation and tissue growth, or for the suppression of apoptosis. 相似文献