首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
BackgroundThe interaction of nutrients with the small intestine stimulates the secretion of numerous enteroendocrine hormones that regulate postprandial metabolism. However, differences in gastrointestinal hormonal responses between the macronutrients are incompletely understood. In the present study, we compared blood glucose and plasma hormone concentrations in response to standardised intraduodenal (ID) fat and glucose infusions in healthy humans.MethodsIn a parallel study design, 16 healthy males who received an intraduodenal fat infusion were compared with 12 healthy males who received intraduodenal glucose, both at a rate of 2 kcal/min over 120 min. Venous blood was sampled at frequent intervals for measurements of blood glucose, and plasma total and active glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon.ResultsPlasma concentrations of the incretin hormones (both total and active GLP-1 and GIP) and glucagon were higher, and plasma insulin and blood glucose concentrations lower, during intraduodenal fat, when compared with intraduodenal glucose, infusion (treatment by time interaction: P < 0.001 for each).ConclusionsCompared with glucose, intraduodenal fat elicits substantially greater GLP-1, GIP and glucagon secretion, with minimal effects on blood glucose or plasma insulin in healthy humans. These observations are consistent with the concept that fat is a more potent stimulus of the ‘gut-incretin’ axis than carbohydrate.  相似文献   

2.
Background and aimsIn rodents, cephalosporin antibiotics can mimic peptones and stimulate release of cholecystokinin (CCK), a hormone that slows gastric emptying. The rate of gastric emptying is a major determinant of postprandial blood glucose and insulin concentrations. We therefore evaluated the effect of orally administered cefaclor on plasma CCK and gastric emptying, as well as postprandial glycemic and insulinemic responses, in healthy humans.Materials and methodsWe studied 8 healthy subjects on two days in double-blind, randomized order. On each day, subjects consumed 1000 mg cefaclor or placebo 30 min before a mashed potato meal labeled with 13C octanoic acid. Blood and breath samples were collected for 4 h after the meal.ResultsBlood glucose, serum insulin and plasma CCK increased in response to the carbohydrate meal on both study days, and cefaclor had no effect on these responses. Similarly, the gastric half-emptying time (measured by breath test) did not differ (placebo: 137.5 ± 6.0 min vs. cefaclor: 143.1 ± 8.0 min).ConclusionCefaclor, when given before a meal in the form of a capsule, does not stimulate CCK release or slow gastric emptying in healthy humans.  相似文献   

3.
Aims/hypothesisCombination treatment with exendin-4 and gastrin has proven beneficial in treatment of diabetes and preservation of beta cell mass in diabetic mice. Here, we examined the chronic effects of a GLP-1-gastrin dual agonist ZP3022 on glycemic control and beta cell dysfunction in overtly diabetic Zucker Diabetic Fatty (ZDF) rats.MethodsZDF rats aged 11 weeks were dosed s.c., b.i.d. for 8 weeks with vehicle, ZP3022, liraglutide, exendin-4, or gastrin-17 with or without exendin-4. Glycemic control was assessed by measurements of HbA1c and blood glucose levels, as well as glucose tolerance during an oral glucose tolerance test (OGTT). Beta cell dynamics were examined by morphometric analyses of beta and alpha cell fractions.ResultsZP3022 improved glycemic control as measured by terminal HbA1c levels (6.2 ± 0.12 (high dose) vs. 7.9 ± 0.07% (vehicle), P < 0.001), as did all treatments, except gastrin-17 monotherapy. In contrast, only ZP3022, exendin-4 and combination treatment with exendin-4 and gastrin-17 significantly improved glucose tolerance and increased insulin levels during an OGTT. Moreover, only ZP3022 significantly enhanced the beta cell fraction in ZDF rats, a difference of 41%, when compared to the vehicle group (0.31 ± 0.03 vs. 0.22 ± 0.02%, respectively, P < 0.05).ConclusionThese data suggest that ZP3022 may have therapeutic potential in the prevention/delay of beta cell dysfunction in type 2 diabetes.  相似文献   

4.
BackgroundGlucagon-like peptide-2 (GLP-2) is known to increase mesenteric blood flow. The aim of the study was to evaluate the effect of GLP-2 on blood flow in different vascular sites, and dynamic changes in cardiac parameters.Methods10 healthy volunteers were given 450 nmol subcutaneous (SC) GLP-2 or isotonic saline (5 subjects) in a single blinded manner. During the following 90 min, blood flow in the superior mesenteric artery (SMA), celiac artery (CA), renal artery (RA), common carotid artery (CCA) was measured using Doppler ultrasound (US), and cardiovascular variables were measured by impedance cardiography and finger plethysmography. Plasma GLP-2 was measured at times 0, 30 and 60 min.ResultsCompared to the placebo group, GLP-2 elicited a 27% decrease in the resistance index (RI) and a 269.4% increase in Time Averaged Maximal Velocity (TAMV) in the SMA (P < 0.01). CA, RA and CCA: There were no significant changes in RI or TAMV in the GLP-2 or placebo group, and no change in CA diameter.Cardiac parameters: GLP-2 increased cardiac output (CO), stroke volume (SV) and heart rate (HR) compared to baseline (respectively: 15.3, 4.81 and 8.2% (P < 0.001, P < 0.01 and P < 0.01)). The CO, SV and HR changes were not significantly different from the placebo group.Mean plasma GLP-2 serum levels in the placebo group at times 0, 30 and 60 min were 22.8, 23.4 and 23.2 pmol/l. In the GLP-2 group 20.3, 1273 and 1725 pmol/l.ConclusionSC GLP-2 increased SMA blood flow, as previously shown, but elicited no changes in other vascular sites. CO and HR increased significantly, presumably due to the increased mesenteric blood flow.  相似文献   

5.
《Endocrine practice》2011,17(1):16-25
ObjectiveTo investigate the effects of daily chromium picolinate supplementation on serum measures of glucose tolerance and insulin sensitivity in patients at high risk for type 2 diabetes mellitus.MethodsWe conducted a randomized, double-blind, placebo-controlled, modified cross-over clinical trial with 6-month sequences of intervention and placebo followed by a 6-month postintervention assessment. Adult patients with impaired fasting glucose, impaired glucose tolerance, or metabolic syndrome were enrolled. Participants received 6-month sequences of chromium picolinate or placebo at 1 of 2 dosages (500 or 1000 mcg daily). Primary outcome measures were change in fasting plasma glucose, 2-hour plasma glucose during oral glucose tolerance testing, fasting and 2-hour insulin, and homeostasis model assessment of insulin resistance (HOMA-IR). Secondary outcomes included anthropometric measures, blood pressure, endothelial function, hemoglobin A1c, lipids, and urinary microalbumin.ResultsFifty-nine participants were enrolled. No changes were seen in glucose level, insulin level, or HOMA-IR (all P > .05) after 6 months of chromium at either dosage level (500 mcg or 1000 mcg daily) when compared with placebo. None of the secondary outcomes improved with either chromium dosage compared with placebo (P > .05).ConclusionsChromium supplementation does not appear to ameliorate insulin resistance or impaired glucose metabolism in patients at risk for type 2 diabetes and thus is unlikely to attenuate diabetes risk. (Endocr Pract. 2011;17:16-25)  相似文献   

6.
BackgroundAlthough insulin resistance (IR) is a key factor in the pathogenesis of type 2 diabetes (T2D), the precise role of insulin in the development of IR remains unclear. Therefore, we investigated whether chronic basal insulin infusion is causative in the development of glucose intolerance.MethodsNormoglycemic lean rats surgically instrumented with i.v. catheters were infused with insulin (3 mU/kg/min) or physiological saline for 6 weeks. At infusion-end, plasma insulin levels along with glucose tolerance were assessed.ResultsSix weeks of insulin infusion induced glucose intolerance and impaired insulin response in healthy rats. Interestingly, the effects of chronic insulin infusion were completely normalized following 24 h withdrawal of exogenous insulin and plasma insulin response to glucose challenge was enhanced, suggesting improved insulin secretory capacity. As a result of this finding, we assessed whether the effects of insulin therapy followed by a washout could ameliorate established glucose intolerance in obese rats. Obese rats were similarly instrumented and infused with insulin or physiological saline for 7 days followed by 24 h washout. Seven day-insulin therapy in obese rats significantly improved glucose tolerance, which was attributed to improved insulin secretory capacity and improved insulin signaling in liver and skeletal muscle.ConclusionModerate infusion of insulin alone is sufficient to cause glucose intolerance and impair endogenous insulin secretory capacity, whereas short-term, intensive insulin therapy followed by insulin removal effectively improves glucose tolerance, insulin response and peripheral insulin sensitivity in obese rats.General significanceNew insight into the link between insulin and glucose intolerance may optimize T2D management.  相似文献   

7.
The importance of the region, as opposed to the length, of small intestine exposed to glucose in determining the secretion of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) remains unclear. We sought to compare the glycemic, insulinemic and incretin responses to glucose administered to the proximal (12–60 cm beyond the pylorus), or more distal ( > 70 cm beyond the pylorus) small intestine, or both. 10 healthy subjects (9M,1F; aged 70.3 ± 1.4 years) underwent infusion of glucose via a catheter into the proximal (glucose proximally; GP), or distal (glucose distally; GD) small intestine, or both (GPD), on three separate days in a randomised fashion. Blood glucose, serum insulin and plasma GLP-1, GIP and CCK responses were assessed. The iAUC for blood glucose was greater in response to GPD than GP (P < 0.05), with no difference between GD and GP. GP was associated with minimal GLP-1 response (P = 0.05), but substantial increases in GIP, CCK and insulin (P < 0.001 for all). GPD and GD both stimulated GLP-1, GIP, CCK and insulin (P < 0.001 for all). Compared to GP, GPD induced greater GLP-1, GIP and CCK responses (P < 0.05 for all). Compared with GPD, GD was associated with greater GLP-1 (P < 0.05), but reduced GIP and CCK (P < 0.05 for both), responses. We conclude that exposure of glucose to the distal small intestine appears necessary for substantial GLP-1 secretion, while exposure of both the proximal and distal small intestine result in substantial secretion of GIP.  相似文献   

8.
《Endocrine practice》2015,21(1):68-76
ObjectiveTo evaluate real-world outcomes in patients with type 2 diabetes mellitus (T2DM) receiving basal insulin who initiate add-on therapy with a rapid-acting insulin (RAI) or a glucagon-like peptide 1 (GLP-1) receptor agonist.MethodsData were extracted retrospectively from a U.S. health claims database. Adults with T2DM on basal insulin who added an RAI (basal + RAI) or GLP-1 receptor agonist (basal + GLP-1) were included. Propensity score matching (with a 1 up to 3 ratio) was used to control for differences in baseline demographics, clinical characteristics, and health resource utilization. Endpoints included prevalence of hypoglycemia, pancreatic events, all-cause and diabetes-related resource utilization, and costs at 1-year follow-up.ResultsOverall, 6,718 matched patients were included: 5,013 basal + RAI and 1,705 basal + GLP1. Patients in both groups experienced a similar proportion of any hypoglycemic event (P = .4079). Hypoglycemic events leading to hospitalization were higher in the basal + RAI cohort (2.7% vs. 1.8%; P = .0444). The basal + GLP-1 cohort experienced fewer all-cause (13.55% vs. 18.61%; P < .0001) and diabetes-related hospitalizations (11.79% vs. 15.68%; P < .0001). The basal + GLP-1 cohort had lower total all-cause health care costs ($18,413 vs. $20,821; P = .0002) but similar diabetes-related costs ($9,134 vs. $8,985; P < .0001) compared with the basal + RAI cohort.ConclusionsAdd-on therapy with a GLP-1 receptor agonist in T2DM patients receiving basal insulin was associated with fewer hospitalizations and lower total all-cause costs compared with add-on therapy using an RAI and could be considered as an alternative to an RAI in certain patients with T2DM who do not achieve effective glycemic control with basal insulin. (Endocr Pract. 2015; 21:68-76)  相似文献   

9.
We have previously demonstrated in human subjects who under euglycemic clamp conditions GLP-1(9–36)amide infusions inhibit endogenous glucose production without substantial insulinotropic effects. An earlier report indicates that GLP-1(9–36)amide is cleaved to a nonapeptide, GLP-1(28–36)amide and a pentapeptide GLP-1(32–36)amide (LVKGR amide). Here we study the effects of the pentapeptide on whole body glucose disposal during hyperglycemic clamp studies. Five dogs underwent indwelling catheterizations. Following recovery, the dogs underwent a 180 min hyperglycemic clamp (basal glucose +98 mg/dl) in a cross-over design. Saline or pentapeptide (30 pmol kg−1 min−1) was infused during the last 120 min after commencement of the hyperglycemic clamp in a primed continuous manner. During the last 30 min of the pentapeptide infusion, glucose utilization (M) significantly increased to 21.4 ± 2.9 mg kg−1 min−1compared to M of 14.3 ± 1.1 mg kg−1 min−1 during the saline infusion (P = 0.026, paired t-test; P = 0.062, Mann–Whitney U test). During this interval, no significant differences in insulin (26.6 ± 3.2 vs. 23.7 ± 2.5 μU/ml, P = NS) or glucagon secretion (34.0 ± 2.1 vs. 31.7 ± 1.8 pg/ml, P = NS) were observed. These findings demonstrate that under hyperglycemic clamp studies the pentapeptide modulates glucose metabolism by a stimulation of whole-body glucose disposal. Further, the findings suggest that the metabolic benefits previously observed during GLP-1(9–36)amide infusions in humans might be due, at least in part, to the metabolic effects of the pentapeptide that is cleaved from the pro-peptide, GLP-1(9–36)amide in the circulation.  相似文献   

10.
《Endocrine practice》2008,14(6):686-690
ObjectiveTo investigate whether the mechanism of increased glycation in acquired immunodeficiency syndrome (AIDS) is due to an alteration in a circulatory plasma enhancer.MethodsWe assessed glycation of serum protein and hemoglobin in patients with AIDS without altered carbohydrate metabolism. Fasting concentrations of glucose, ethanol, vitamin E, fructosamine, hemoglobin, hemoglobin A1c (A1C), and partial pressure of alveolar oxygen (Pao2) were determined in 50 men with AIDS and in 25 age-matched healthy men in whom normal glucose tolerance was established by oral glucose tolerance tests.ResultsFasting serum glucose was not significantly different between the men with AIDS (87 ± 4 mg/dL) and the healthy male volunteers (84 ± 6 mg/dL); however, A1C (6.9 ± 0.2%) and serum fructosamine levels (288 ± 15 μmol/L) were significantly higher (P < .01) in the patients with AIDS than in the normal subjects (A1C, 5.6 ± 0.1%; fructosamine, 204 ± 14 μmol/L). Moreover, both A1C and fructosamine concentrations were significantly higher (P < .01) in the patients with AIDS than in the normal subjects divided into subgroups on the basis of fasting plasma glucose concentrations (70 to 79 mg/dL, 80 to 89 mg/dL, and 90 to 99 mg/dL). None of the study participants had anemia (hemoglobin < 12 g/dL) or hypoxia (Pao2 < 95 mm Hg), and serum ethanol was undetectable. Furthermore, vitamin E concentrations were not significantly different between the patients with AIDS (25 ± 3 mg/L) and the normal subjects (22 ± 4 mg/L).ConclusionOn the basis of this study, glycation of some circulating proteins appears to be enhanced in AIDS and may be induced by an undetermined plasma enhancer, inasmuch as known circulating factors promoting glycation were absent. (Endocr Pract. 2008;14:686-690)  相似文献   

11.
《Phytomedicine》2014,21(10):1162-1169
PurposeThe aim of this study was to investigate the potential benefits of an extract obtained from seeds/fruits of an Oleaceae (Fraxinus excelsior L.) on glucose homeostasis and associated metabolic markers in non-diabetic overweight/obese subjects.Materials and methodsThis study was performed in 22 participants (50–80 years-old; BMI 31.0 kg/m2). The design was a longitudinal, randomized, crossover, double-blind, placebo-controlled 7-week nutritional intervention. The participants received daily 3 capsules each containing either 333 mg of an extract from Fraxinus excelsior L. seeds (Glucevia®) or placebo capsules (control) in a random order for 3 weeks with 1 week of washout between treatments. Moreover, they followed a balanced covert energy-restricted diet (−15% energy). All variables were measured at the beginning and at the end of each period.ResultsCompared to baseline, the administration of 1 g of Glucevia® for 3 weeks resulted in significantly lower incremental glucose area under the curve (−28.2%; p < 0.01), and significantly lower 2 h blood glucose values (−14%; p < 0.01) following an oral glucose tolerance test. No significant changes were found in the control group (−7.9% AUC, −1.6% 2 h blood glucose). Furthermore, significant differences were found between responses in the control and Glucevia® groups with respect to serum fructosamine and plasma glucagon levels (p < 0.01 and p < 0.05, respectively). Interestingly, administration of Glucevia® significantly increased the adiponectin:leptin ratio (p < 0.05) and decreased fat mass (p < 0.01) compared to control (p < 0.05).ConclusionThe administration of an extract from Fraxinus excelsior L. seeds/fruits in combination with a moderate hypocaloric diet may be beneficial in metabolic disturbances linked to impaired glucose tolerance, obesity, insulin resistance and inflammatory status, specifically in older adults.  相似文献   

12.
《Cytokine》2015,72(2):296-301
BackgroundYKL-40, a chitinase-like protein, is a biomarker for type 1 and type 2 diabetes prognosis. We hypothesized that YKL-40 protein levels are elevated in CF patients with dysglycemia.MethodsSeventeen healthy control subjects and 66 CF patients were prospectively recruited and subjected to an oral glucose tolerance test. In all participants, fasting serum YKL-40 was compared between control and CF patients and between normal glucose-tolerant patients (NG-CF) and CF patients with dysglycemia (DG-CF). A Botnia clamp procedure was performed on a subset of patients for each group to determine the impact of acute increases of either glucose or insulin on YKL-40 concentration.ResultsCF patients had higher serum YKL-40 values than the controls (113 [49;288] vs. 38 [30;50] ng/ml, p < 0.001). YKL-40 concentrations in CF patients were mainly increased in the DG-CF group, who had significantly higher values: 213 [93;383] vs. 67 [27;97] ng/ml in the NG-CF group, p < 0.001). No significant modulation of YKL-40 concentration was observed in serum of CF (NG or DG-CF) or non-CF patients, after acute exposure to glucose or insulin.ConclusionsHigher serum YKL-40 levels in CF patients are significantly associated with dysglycemia. The increase in YKL-40 is potentially associated with an inflammatory response resulting from chronic glucose intolerance or CF disease evolution.  相似文献   

13.
AimThe contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated.Main methodsPWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1 g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated.Key findingsConventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (p < 0.05) glucose concentration in the fed state. In addition, we observed IR and increased glucose tolerance in the fed state (PWR-day 20 vs. day 0). Furthermore, our data from glycogenolysis and gluconeogenesis suggested that the liver glucose production did not contribute to these changes in insulin sensitivity and/or glucose tolerance during late pregnancy.SignificanceIn contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting.  相似文献   

14.
Glucagon-like peptide-1 (GLP-1) has been proved to have effects of anti-hyperglycemia and β-cell preservation. However, it is still unclear whether there are differences between early and late GLP-1 intervention in type 2 diabetes mellitus (T2DM). We divided the mice into 5 groups: early treated group (n = 7, 8-week old, fasting glucose > 10 mmol/l), late treated group (n = 7, 10-week old, fasting glucose > 20 mmol/l), early control group (n = 7), late control group (n = 7) and wild type group (n = 7). Treated group was injected with liraglutide (a GLP-1 analog) 300 μg/kg bid for 4 weeks, while control group was given saline at the same time. The results showed that compared with control group, food intake and body weight gain were reduced in both early and late treated group (p < 0.05), and there was no significance between the two treated groups. Early liraglutide intervention showed better improvements in glucose control, acute insulin response to glucose (AIRg) and disposition index (before vs. after treatment, AIRg 1.01 ± 0.53 vs. 2.98 ± 0.63, disposition index 10.81 ± 0.89 vs. 27.4 ± 2.15) than late intervention (AIRg 0.99 ± 0.02 vs. 1.41 ± 0.32, disposition index 3.47 ± 0.38 vs. 6.43 ± 1.62, p = 0.001). The histopathology of the pancreas showed the estimated β-cell mass (BCM) was increased more in early treated group than that in late one (0.03 vs. 0.01 g). Expressions of the proliferation related genes PDX-1, MafA and GLP-1 receptor (GLP-1R) in early treated group were 1.81, 2.57 and 1.59 times as much as that in late treated group. In conclusion, early liraglutide intervention was better in glucose control, β-cell function improvement and β-cell mass preservation.  相似文献   

15.
Background &; aimsIt has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats.MethodsMale Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67.ResultsDuring the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of β-cell area/acinar cell area and β-cell area/islet area, and also β-cell proliferation, were significantly higher in the ligation group than in the sham group (p < 0.05, p < 0.01 and p < 0.01, respectively). The insulin content per unit wet weight of pancreas was also significantly increased in the ligation group (p < 0.05).ConclusionsIn rats with ligation of the mesenteric lymph duct, insulin secretion during the OGTT or IVGTT was higher, and the insulin content and β-cell proliferation in the pancreas were also increased. Our data show that mesenteric lymph duct flow has a role in glucose metabolism.  相似文献   

16.
《Cytokine》2014,65(2):159-166
IntroductionOur previous study revealed that plasma visfatin levels were lower in pregnant women with gestational diabetes (GDM) than non-GDM independent of prepreganacy BMI. We examined whether central visfatin modulates energy and glucose homeostasis via altering insulin resistance, insulin secretion or islet morphometry in diabetic rats.MethodsPartial pancreatectomized, type 2 diabetic, rats were interacerbroventricularly infused with visfatin (100 ng/rat/day, Px-VIS), visfatin + visfatin antagonist, CHS-828 (100 μg/rat/day, Px-VIS-ANT), or saline (control, Px-Saline) via osmotic pump, respectively, for 4 weeks.ResultsCentral visfatin improved insulin signaling (pAkt  pFOXO-1) but not pSTAT3 in the hypothalamus. Central visfatin did not alter serum visfatin levels in diabetic rats whereas the levels were higher in non-diabetic rats than diabetic rats. Body weight at the 2nd week was lowered in the Px-VIS group due to decreased food intake in the first two weeks compared to the Px-Saline group and energy expenditure was not significantly different among the treatment groups of diabetic rats. Visfatin antagonist treatment nullified the central visfatin effect. Px-VIS increased whole body glucose disposal rates in euglycemic hyperinsulinemic clamp compared to Px-Saline and lowered hepatic glucose output, whereas Px-VIS-ANT blocked the visfatin effect on insulin resistance (P < 0.05). In hyperglycemic clamp study, the area under the curve of insulin in first and second phase were significantly higher in the Px-VIS group than the Px-Saline group without modifying insulin sensitivity at the hyperglycemic state, whereas the increase in serum insulin levels was blocked in the Px-VIS-ANT group. Central visfatin also increased β-cell mass by increasing β-cell proliferation.ConclusionsCentral visfatin improved glucose homeostasis by increasing insulin secretion and insulin sensitivity at euglycemia through the hypothalamus in diabetic rats. Therefore, visfatin is a positive modulator of glucose homeostasis by delivering the hypothalamic signals into the peripheries.  相似文献   

17.
BackgroundImpaired zinc metabolism is prominent in chronic disorders including cardiovascular disease and diabetes. Zinc has the potential to affect glucose homeostasis in animals and humans and hence impact the risk of type 2 diabetes mellitus.MethodsA systematic review and meta-analysis of randomised placebo controlled trials was conducted to determine the effect of zinc supplementation on fasting blood glucose, HbA1c, serum insulin and serum zinc concentrations. Relevant studies for inclusion were identified from a literature search of electronic databases up to July 2011.ResultsFourteen reports (n = 3978 subjects) were included in the meta-analysis. In the overall analysis, a small but statistically significant reduction in fasting glucose concentrations was observed (?0.19 ± 0.08 mmol/L, P = 0.013) after zinc supplementation. HbA1c tended to decrease in zinc-supplemented individuals (?0.64 ± 0.36%, P = 0.072). No significant effect was observed for serum insulin concentrations. Plasma zinc concentrations increased significantly following supplementation (+4.03 ± 0.81 μmol/L, P = 0.001). In secondary analyses of participants with chronic metabolic disease (types 1 and 2 diabetes mellitus, metabolic syndrome and obesity), zinc supplementation produced a greater reduction in glucose concentrations (?0.49 ± 0.11 mmol/L, P = 0.001) compared to the effect that was observed in healthy participants.ConclusionThe significant albeit modest reduction in glucose concentrations and tendency for a decrease in HbA1c following zinc supplementation suggest that zinc may contribute to the management of hyperglycemia in individuals with chronic metabolic disease.  相似文献   

18.
The effects of metformin and pioglitazone on ghrelin, a physiologic regulator of appetite and food intake, have not been clearly established. In a randomized clinical trial, we randomly assigned 60 type 2 diabetic patients to either metformin (Group A; n = 30) or pioglitazone (Group B; n = 30) treatment groups. The groups were similar in their baseline characteristics. A standard fasting 75 g oral glucose tolerance test was performed at time zero before starting metformin or pioglitazone, and 3 months later. After 3 months of treatment, pioglitazone, but not metformin, was significantly associated with weight gain. Both groups experienced a significant reduction in fasting plasma glucose (p < 0.01), hemoglobin A1c (p < 0.01 in Group A and p < 0.05 in Group B), and insulin resistance (p < 0.01). The effect of metformin on preprandial ghrelin and its response to glucose challenge was not significant, while the pioglitazone group had a significant reduction in preprandial ghrelin levels after treatment (p < 0.05). The effect of pioglitazone on ghrelin was independent of changes in body weight, body mass index, glucose control, insulin resistance, and plasma insulin. In conclusion, treatment with pioglitazone is associated with a decrease in preprandial ghrelin levels and therefore, the weight gain and increased food intake related to pioglitazone use cannot be explained by its effects on ghrelin. The effect of pioglitazone on ghrelin is independent of changes in body weight, body mass index, plasma insulin, insulin resistance, or glucose control.  相似文献   

19.
《Endocrine practice》2010,16(4):617-628
ObjectiveTo assess the effect of the bile acid sequestrant colesevelam hydrochloride in patients with hypercholesterolemia and prediabetes.MethodsIn this 16-week, randomized, double-blind study, adults with untreated prediabetes (2-hour postoral glucose tolerance test [OGTT] glucose ≥ 140 to 199 mg/dL, fasting plasma glucose [FPG] ≥ 110 to 125 mg/ dL, or both), low-density lipoprotein cholesterol (LDL-C) ≥ 100 mg/dL, and triglycerides < 500 mg/dL were randomly assigned to receive colesevelam (3.75 g/d) or placebo. The primary end point was percent change in LDL-C from baseline to week 16 with last observation carried forward. Secondary end points included change in FPG, hemoglobin A1c (A1C), and 2-hour post-OGTT glucose level from baseline to week 16 and attainment of LDL-C and FPG targets.ResultsIn total, 216 patients were randomized (colesevelam, 108; placebo, 108). In comparison with placebo, colesevelam significantly reduced LDL-C (mean treatment difference, -15.6%), non-high-density lipoprotein cholesterol (-9.1%), total cholesterol (-7.2%), apolipoprotein B (-8.1%) (P < .001 for all the foregoing), FPG (median, -2.0 mg/dL; P = .02), and A1C (mean, -0.10%; P = .02). Colesevelam did not significantly change 2-hour post-OGTT glucose (-1.9 mg/dL; P = .75) or high-density lipoprotein cholesterol (-0.5%; P = .80). In addition, colesevelam significantly increased triglyceride levels relative to placebo (median, 14.3%; P < .001). The proportion of patients achieving target levels with colesevelam versus placebo, respectively, was as follows: LDL-C < 100 mg/dL (29% versus 11%; P < .001), A1C < 6.0% (37% versus 25%; P = .05), FPG < 110 mg/dL (48% versus 56%; P = .97), and normalization of glucose (FPG < 100 mg/dL [40% versus 23%; P = .06]). Colesevelam had a weight-neutral effect and was well tolerated.ConclusionColesevelam is an option for managing the lipid profile and normalizing glucose levels in patients with hypercholesterolemia and prediabetes. Further study is warranted to determine whether colesevelam slows or prevents progression of prediabetes to type 2 diabetes. (Endocr Pract. 2010;16:617-628)  相似文献   

20.
《Endocrine practice》2012,18(4):558-562
ObjectiveTo observe the effect of the dawn phenomenon on basal glucose and postbreakfast hyperglycemia in patients with type 1 diabetes treated with once-nightly insulin glargine and premeal insulin lispro.MethodsIn 49 study subjects consuming a fixed isocaloric (50% carbohydrate) diet of usual food, the insulin glargine dose was titrated from daily continuous glucose monitoring downloads to achieve a basal glucose goal of < 130 mg/dL 4 hours after meals and during serial meal omissions but with fewer than 10% of readings at < 70 mg/ dL during 24 hours. Patients also performed self-monitoring of plasma glucose 7 times a day (before and 2 hours after each meal or omitted meal and at bedtime).ResultsThe target mean basal glucose level was achieved only during the non-dawn phenomenon period (1400 hours to 0400 hours). During the dawn phenomenon, the mean (standard deviation) basal glucose level increased from 118 (57) mg/dL at 0400 hours to 156 (67) mg/dL before the breakfast meal, a 32% increase (P = .00149). The mean self-monitored plasma glucose level with meal omission was 63.8% of that increase with a breakfast meal.ConclusionThe fasting morning glucose concentration is considerably elevated because of the dawn phenomenon. Targeting insulin titration to this glucose level may result in excessive basal insulin dosing for the non-dawn phenomenon periods of the day. The dawn phenomenon is a large component of the postbreakfast hyperglycemia. Rather than increasing the morning premeal insulin bolus, consideration should be given to pretreating the earlier dawn phenomenon with an insulin pump with use of a variable basal insulin rate. (Endocr Pract. 2012;18:558-562)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号