首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions.  相似文献   

2.
An endonuclease was isolated from 5 days old Agropyron elongatum 8x = Elytrigia turcica McGuire seedlings. The enzyme was purified by means of ammonium sulfate fractionation, DEAE-cellulose and Heparin Sepharose column. The final preparation, named nuclease A, gave a single band after silver staining had followed SDS-electrophoresis that was identified with nuclease activities. The enzyme also showed a single band after activity staining on gel polymerized in the presence of heat denatured DNA (ssDNA)/RNA. The Mr of native enzyme was 36 and the enzyme's moiety consisted of one polypeptide chain. Nuclease A activity was stimulated in the presence of Zn(2+) and was moderately reduced by NaCl yet strongly by spermine. The enzyme had pH optimum 5.5 and isoelectric point (pI) 4.7. It hydrolyzed the nucleic acids in the order ssDNA > dsDNA > or = RNA; hence it was classified as a plant nuclease type I (EC 3.1.30.2). Synthetic homopolyribonucleotides were hydrolyzed in the order polyU > polyI > or = polyA > polyG > polyC. Nuclease A nicked the supercoiled plasmid DNA while it was incapable of hydrolyzing dinucleoside monophosphates. With regard to nuclease A base linkage specificity towards a synthetic 5'-(32)P labeled deoxydecanucleotide [5'-(32)P]CCTGGCAGTT, the enzyme firstly exhibited a preference to Ap downward arrow G bond and then to Gp downward arrow T, Cp downward arrow A and Gp downward arrow G bonds while it was incapable of hydrolyzing the Cp downward arrow C bond. The substrate's products of nuclease A were oligonucleotides with the monoesterified phosphate at the 3' position. Nuclease A may perform a crucial function in the metabolism of nucleic acids during seedling growth and could be used as a biochemical tool for analysis of nucleic acids structure.  相似文献   

3.
The generation of DNA aptamer by Systematic Evolution of Ligands by Exponential Enrichment requires a good method of ssDNA generation. There are various methods developed to generate ssDNA such as streptavidin-biotin based separation techniques, asymmetric PCR and strand separation of the PCR product containing primer with a terminator and an extension of 20 nucleotides on denaturing urea-polyacrylamide gel. In the present investigation, we have shown the possible improvements for the regular lambda nuclease digestion under optimized conditions. Optimization of the PCR cycles, time course studies on lambda nuclease digestion and purification of the ssDNA from the lambda exonuclease digestion mixture was found to be able to recover ssDNA amounting up to 39.19 ± 2.48 % of the starting amount of dsDNA. These strategies can be applied to the techniques involving essential usage of ssDNA.  相似文献   

4.
Here we examined the intrinsic nuclease activity of diphtheria toxin (DTx) to determine the mechanism by which it catalyzes DNA degradation. Results show that DTx degrades double-stranded DNA (dsDNA) by non-processive, endonucleolytic attack, without apparent specificity for nucleotide sequence. Moreover, divalent cation composition determines whether supercoiled dsDNA is cleaved by the introduction of single-strand nicks or double-strand breaks. Circular single-stranded DNA (ssDNA) is also a substrate for endonucleolytic attack. Pre-incubation of DTx with a 2000-fold excess of NAD, the natural substrate for the toxin's ADP-ribosyltransferase (ADPrT) activity, inhibited the transfer of radiolabeled ADP-ribose to elongation factor 2 but had no effect on the degradation of radiolabeled DNA. Based on this result and the fact that compounds known to inhibit the ADPrT activity of DTx had no effect on its nuclease activity and pre-incubation of DTx with DNA had no effect on ADPrT activity, we conclude that the ADPrT and nuclease active sites of DTx are functionally and spatially distinct. Moreover, studies with an ADPrT-inactivated form of DTx indicate that nuclease activity alone can lead to target cell lysis.  相似文献   

5.
The Mre11-Rad50 complex (MR) from bacteriophage T4 (gp46/47) is involved in the processing of DNA double-strand breaks. Here, we describe the activities of the T4 MR complex and its modulation by proteins involved in homologous recombination. T4 Mre11 is a Rad50- and Mn(2+)-dependent dsDNA exonuclease and ssDNA endonuclease. ATP hydrolysis is required for the removal of multiple nucleotides via dsDNA exonuclease activity but not for the removal of the first nucleotide or for ssDNA endonuclease activity, indicating ATP hydrolysis is only required for repetitive nucleotide removal. By itself, Rad50 is a relatively inefficient ATPase, but the presence of Mre11 and dsDNA increases ATP hydrolysis by 20-fold. The ATP hydrolysis reaction exhibits positive cooperativity with Hill coefficients ranging from 1.4 for Rad50 alone to 2.4 for the Rad50-Mre11-DNA complex. Kinetic assays suggest that approximately four nucleotides are removed per ATP hydrolyzed. Directionality assays indicate that the prevailing activity is a 3' to 5' dsDNA exonuclease, which is incompatible with the proposed role of MR in the production of 3' ssDNA ends. Interestingly, we found that in the presence of a recombination mediator protein (UvsY) and ssDNA-binding protein (gp32), Mre11 is capable of using Mg(2+) as a cofactor for its nuclease activity. Additionally, the Mg(2+)-dependent nuclease activity, activated by UvsY and gp32, results in the formation of endonuclease reaction products. These results suggest that gp32 and UvsY may alter divalent cation preference and facilitate the formation of a 3' ssDNA overhang, which is a necessary intermediate for recombination-mediated double-strand break repair.  相似文献   

6.
We have characterized monoclonal antibodies raised against the neuraminidase (NA) of a Sydney-like influenza virus (A/Memphis/31/98, H3N2) in a reassortant virus A/NWS/33(HA)-A/Mem/31/98(NA) (H1N2) and nine escape mutants selected by these monoclonal antibodies. Five of the antibodies use the same heavy chain VDJ genes and may not be independent. Another antibody, Mem5, uses the same V(H) and J genes with a different D gene and different isotype. Sequence changes in escape mutants selected by these antibodies occur in two loops of the NA, at amino acid 198, 199, 220, or 221. These amino acids are located on the opposite side of the NA monomer to the major epitopes found in N9 and early N2 NAs. Escape mutants with a change at 198 have reduced NA activity compared to the wild-type virus. Asp198 points toward the substrate binding pocket, and we had previously found that a site-directed mutation of this amino acid resulted in a loss of enzyme activity (M. R. Lentz, R. G. Webster, and G. M. Air, Biochemistry 26:5351-5358, 1987). Mutations at residue 199, 220, or 221 did not alter the NA activity significantly compared to that of wild-type NA. A 3.5-A structure of Mem5 Fab complexed with the Mem/98 NA shows that the Mem5 antibody binds at the sites of escape mutation selected by the other antibodies.  相似文献   

7.
The gene A protein cleaves phi X174 single-stranded DNA (ssDNA). The cleavage appears to be stoichiometric, whereby a gene A protein molecule breaks a phosphodiester bond and binds to the 5' end. The enzyme introduces mostly a single break in a circular ssDNA molecule. However, at high enzyme-to-DNA ratios, more than one break in the DNA could be observed. The cleavage of the ssDNA by gene A protein renders the DNA sensitive to the action of terminal transferase to incorporate [alpha -32P]ATP. Thus, the 3'OH end is free. All attempts to label the 5' end by T4-induced polynucleotide kinase and [gamma-32P]ATP failed. The formation of a gene A-ssDNA complex was demonstrated directly by using 3H-labeled gene A protein and 32P-labeled ssDNA in the reaction. Such a complex is resistant to treatments with 0.2 M NaOH, banding in CsCl, and boiling in 2.5% sodium dodecyl sulfate. Only treatment with a nuclease released the bound protein. Also, after cleaving [32P]ssDNA by gene A protein, followed by either DNase I or micrococcal nuclease digestion, a fraction of the 32P label remained resistant to nuclease treatment and comigrated with gene A protein on polyacrylamide gels.  相似文献   

8.
TREX1 is a potent 3' → 5' exonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA). TREX1 mutations at amino acid positions Asp-18 and Asp-200 in familial chilblain lupus and Aicardi-Goutières syndrome elicit dominant immune dysfunction phenotypes. Failure to appropriately disassemble genomic DNA during normal cell death processes could lead to persistent DNA signals that trigger the innate immune response and autoimmunity. We tested this concept using dsDNA plasmid and chromatin and show that the TREX1 exonuclease locates 3' termini generated by endonucleases and degrades the nicked DNA polynucleotide. A competition assay was designed using TREX1 dominant mutants and variants to demonstrate that an intact DNA binding process, coupled with dysfunctional chemistry in the active sites, explains the dominant phenotypes in TREX1 D18N, D200N, and D200H alleles. The TREX1 residues Arg-174 and Lys-175 positioned adjacent to the active sites act with the Arg-128 residues positioned in the catalytic cores to facilitate melting of dsDNA and generate ssDNA for entry into the active sites. Metal-dependent ssDNA binding in the active sites of the catalytically inactive dominant TREX1 mutants contributes to DNA retention and precludes access to DNA 3' termini by active TREX1 enzyme. Thus, the dominant disease genetics exhibited by the TREX1 D18N, D200N, and D200H alleles parallel precisely the biochemical properties of these TREX1 dimers during dsDNA degradation of plasmid and chromatin DNA in vitro. These results support the concept that failure to degrade genomic dsDNA is a principal pathway of immune activation in TREX1-mediated autoimmune disease.  相似文献   

9.
The molecular structure of the archetypal aspartic proteinase, porcine pepsin (EC 3.4.23.1), has been refined using data collected from a single monoclinic crystal on a twin multiwire detector system to 1.8 A resolution. The current crystallographic R-factor (= sigma parallel to Fo/-/Fc parallel to/sigma/Fo/) is 0.174 for the 20,519 reflections with /Fo/ greater than or equal to 3 sigma (Fo) in the range 8.0 to 1.8 A (/Fo/ and /Fc/ are the observed and calculated structure factor amplitudes respectively). The refinement has shown conclusively that there are only 326 amino acid residues in porcine pepsin. Ile230 is not present in the molecule. The two catalytic residues Asp32 and Asp215 have dispositions in porcine pepsin very similar to the dispositions of the equivalent residues in the other aspartic proteinases of known structure. A bound solvent molecule is associated with both carboxyl groups at the active site. No bound ethanol molecule could be identified conclusively in the structure. The average thermal motion parameter of the residues that comprise the C-terminal domain of pepsin is approximately twice that of the residues in the N-terminal domain. Comparisons of the tertiary structure of pepsin with porcine pepsinogen, penicillopepsin, rhizopus pepsin and endothia pepsin reveal that the N-terminal domains are topographically more similar than the conformationally flexible C-terminal domains. The conformational differences may be modeled as rigid-body movements of "reduced" C-terminal domains (residues 193 to 212 and 223 to 298 in pepsin numbering). A similar movement of the C-terminal domain of endothia pepsin has been observed upon inhibitor binding. A phosphoryl group covalently attached to Ser68 O gamma has been identified in the electron density map of porcine pepsin. The low pKa1 value for this group, coupled with unusual microenvironments for several of the aspartyl carboxylate groups, ensures a net negative charge on porcine pepsin in a strongly acid medium. Thus, there is a structural explanation for the very early observations of "anodic migration" of porcine pepsin at pH 1. In the crystals, the molecules are packed tightly into a monoclinic unit cell. There are 190 direct contacts (less than or equal to 4.0 A) between a central pepsin molecule and the five unique symmetry-related molecules surrounding it in the crystalline lattice. The tight packing in this cell makes pepsin's active site and binding cleft relatively inaccessible to substrate analogs or inhibitors.  相似文献   

10.
A fluorometric assay for pepsin and pepsinogen was developed using enhanced green fluorescent protein (EGFP) as a substrate. Acid denaturation of EGFP resulted in a complete loss of fluorescence that was completely reversible on neutralization. In the proteolytic assay procedure, acid-denatured EGFP was digested by pepsin or activated pepsinogen. After neutralization, the remaining amount of undigested EGFP refolded and was determined by fluorescence. Under standard digestion conditions, 4.8-24.0 ng pepsin or pepsinogen was used. Using porcine pepsin as a standard, 38+/-6.7 ng EGFP was digested per min-1 ng pepsin-1. Activated porcine pepsinogen revealed a similar digestion rate (37.2+/-5.2 ng EGFP min-1 ng activated pepsinogen-1). The sensitivity of the proteolysis assay depended on the time of digestion and the temperature. Increasing temperature and incubation time allowed quantification of pepsin or pepsinogen in a sample even in the picogram range. The pepsin-catalyzed EGFP digestion showed typical Michaelis-Menten kinetics. Km and Vmax values were determined for the pepsin and activated pepsinogen. Digestion of EGFP by pepsin revealed distinct cleavage sites, as analyzed by SDS-PAGE.  相似文献   

11.
Sun JZ  Julin DA  Hu JS 《Biochemistry》2006,45(1):131-140
The 30 kDa C-terminal domain of the RecB protein (RecB30) has nuclease activity and is believed to be responsible for the nucleolytic activities of the RecBCD enzyme. However, the RecB30 protein, studied as a histidine-tagged fusion protein, appeared to have very low nucleolytic activity on single-stranded (ss) DNA [Zhang, X. J., and Julin, D. A. (1999) Nucleic Acids Res. 27, 4200-4207], which raised the question of whether RecB30 was indeed the sole nuclease domain of RecBCD. Here, we have purified the RecB30 protein without a fusion tag. We report that RecB30 efficiently degrades both linear and circular single- and double-stranded (ds) DNA. The endonucleolytic cleavage of circular dsDNA is consistent with the fact that RecB30 has amino acid sequence similarity to some restriction endonucleases. However, endonuclease activity on dsDNA had never been seen before for RecBCD or any fragments of RecBCD. Kinetic analysis indicates that RecB30 is at least as active as RecBCD on the ssDNA substrates. These results provide direct evidence that RecB30 is the universal nuclease domain of RecBCD. The fact that the RecB30 nuclease domain alone has high intrinsic nuclease activity and can cleave dsDNA endonucleolytically suggests that the nuclease activity of RecB30 is modulated when it is part of the RecBCD holoenzyme. A new model has been proposed to explain the regulation of the RecB30 nuclease in RecBCD.  相似文献   

12.
Compensatory mutations contribute to the appearance of the oseltamivir resistance substitution H274Y in the neuraminidase (NA) gene of H1N1 influenza viruses. Here, we describe a high-throughput screening method utilizing error-prone PCR and next-generation sequencing to comprehensively screen NA genes for H274Y compensatory mutations. We found four mutations that can either fully (R194G, E214D) or partially (L250P, F239Y) compensate for the fitness deficiency of the H274Y mutant. The compensatory effect of E214D is applicable in both seasonal influenza virus strain A/New Caledonia/20/1999 and 2009 pandemic swine influenza virus strain A/California/04/2009. The technique described here has the potential to profile a gene at the single-nucleotide level to comprehend the dynamics of mutation space and fitness and thus offers prediction power for emerging mutant species.  相似文献   

13.
We examined ssDNA and dsDNA containing a CAP-binding region or a lexA protein-binding region in the recA gene of Escherichia coli with endonucleases (E. coli endonuclease I and bovine DNase I) to deduce the structural conformation of dsDNA as well as ssDNA. Each nuclease produced its own cleavage pattern. Some cleavages occurred at common sites in ssDNA and dsDNA. The common cleavage sites for endonuclease I included ones that have been inferred to be functionally important. Efficient cleavage occurred at bent sites in the CAP-binding region, and at "SOS box" sites in the recA gene. NTP (dNTP) greatly increased the cleavage at these sites in the ssDNA and dsDNA. Next, we investigated whether mutations which affect function can be ascribed to variation in the conformation of DNA. Polynucleotides containing a single base substitution derived from the mutants in the CAP-binding region were cleaved by endonuclease I. The cleavage pattern varied predominantly around the substituted nucleotide in dsDNA. Thus, we confirmed that DNA structure is closely related to function. Complexes of endonuclease I and synthetic polynucleotides that had one cleavage site were confirmed to exist in the absence of magnesium ions by gel-shift assay.  相似文献   

14.
(A)BC excinuclease of Escherichia coli removes damaged nucleotides from DNA by hydrolyzing the 8th phosphodiester bond 5' and the 15th phosphodiester bond 3' to the modified base. The activity results from the ordered action of UvrA, UvrB, and UvrC proteins. The role of UvrA is to help assemble the UvrB.DNA complex, and it is not involved in the actual incision reactions which are carried out by UvrB and UvrC. To investigate the role of UvrC in the nuclease activity a subset of His, Asp, and Glu residues in the C-terminal half of the protein were mutagenized in vitro. The effect of these mutations on UV resistance in vivo and incision activity in vitro were investigated. Mutations, H538F, D399A, D438A, and D466A conferred extreme UV sensitivity. Enzyme reconstituted with these mutant proteins carried out normal 3' incision but was completely defective in 5' incision activity. Our data suggest that UvrC makes the 5' incision by employing a mechanism whereby the three carboxylates acting in concert with H538 and a Mg2+ ion facilitate nucleophilic attack by an active site water molecule.  相似文献   

15.
Honda M  Okuno Y  Yoo J  Ha T  Spies M 《The EMBO journal》2011,30(16):3368-3382
RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52(Y104pCMF) retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52(Y104pCMF) specifically targets and wraps ssDNA. While RAD52(Y104pCMF) is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.  相似文献   

16.
Much of the catalytic power of trypsin is derived from the unusual buried, charged side chain of Asp102. A polar cave provides the stabilization for maintaining the buried charge, and it features the conserved amino acid Ser214 adjacent to Asp102. Ser214 has been replaced with Ala, Glu, and Lys in rat anionic trypsin, and the consequences of these changes have been determined. Three-dimensional structures of the Glu and Lys variant trypsins reveal that the new 214 side chains are buried. The 2.2-A crystal structure (R = 0.150) of trypsin S214K shows that Lys214 occupies the position held by Ser214 and a buried water molecule in the buried polar cave. Lys214-N zeta is solvent inaccessible and is less than 5 A from the catalytic Asp102. The side chain of Glu214 (2.8 A, R = 0.168) in trypsin S214E shows two conformations. In the major one, the Glu carboxylate in S214E forms a hydrogen bond with Asp102. Analytical isoelectrofocusing results show that trypsin S214K has a significantly different isoelectric point than trypsin, corresponding to an additional positive charge. The kinetic parameter kcat demonstrates that, compared to trypsin, S214K has 1% of the catalytic activity on a tripeptide amide substrate and S214E is 44% as active. Electrostatic potential calculations provide corroboration of the charge on Lys214 and are consistent with the kinetic results, suggesting that the presence of Lys214 has disturbed the electrostatic potential of Asp102.  相似文献   

17.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the hydrolysis of the phosphodiester linkage between the DNA 3' phosphate and a tyrosine residue as well as a variety of other DNA 3' damaged termini. Recently we have shown that Tdp1 can liberate the 3' DNA phosphate termini from apurinic/apyrimidinic (AP) sites. Here, we found that Tdp1 is more active in the cleavage of the AP sites inside bubble-DNA structure in comparison to ssDNA containing AP site. Furthermore, Tdp1 hydrolyzes AP sites opposite to bulky fluorescein adduct faster than AP sites located in dsDNA. Whilst the Tdp1 H493R (SCAN1) and H263A mutants retain the ability to bind an AP site-containing DNA, both mutants do not reveal endonuclease activity, further suggesting the specificity of the AP cleavage activity. We suggest that this Tdp1 activity can contribute to the repair of AP sites particularly in DNA structures containing ssDNA region or AP sites in the context of clustered DNA lesions.  相似文献   

18.
Sayer JM  Louis JM 《Proteins》2009,75(3):556-568
The importance of the active site region aspartyl residues 25 and 29 of the mature HIV-1 protease (PR) for the binding of five clinical and three experimental protease inhibitors [symmetric cyclic urea inhibitor DMP323, nonhydrolyzable substrate analog (RPB) and the generic aspartic protease inhibitor acetyl-pepstatin (Ac-PEP)] was assessed by differential scanning calorimetry. DeltaT(m) values, defined as the difference in T(m) for a given protein in the presence and absence of inhibitor, for PR with DRV, ATV, SQV, RTV, APV, DMP323, RPB, and Ac-PEP are 22.4, 20.8, 19.3, 15.6, 14.3, 14.7, 8.7, and 6.5 degrees C, respectively. Binding of APV and Ac-PEP is most sensitive to the D25N mutation, as shown by DeltaT(m) ratios [DeltaT(m)(PR)/DeltaT(m)(PR(D25N))] of 35.8 and 16.3, respectively, whereas binding of DMP323 and RPB (DeltaT(m) ratios of 1-2) is least affected. Binding of the substrate-like inhibitors RPB and Ac-PEP is nearly abolished (DeltaT(m)(PR)/DeltaT(m)(PR(D29N)) > or = 44) by the D29N mutation, whereas this mutation only moderately affects binding of the smaller inhibitors (DeltaT(m) ratios of 1.4-2.2). Of the nine FDA-approved clinical HIV-1 protease inhibitors screened, APV, RTV, and DRV competitively inhibit porcine pepsin with K(i) values of 0.3, 0.6, and 2.14 microM, respectively. DSC results were consistent with this relatively weak binding of APV (DeltaT(m) 2.7 degrees C) compared with the tight binding of Ac-PEP (DeltaT(m) > or = 17 degrees C). Comparison of superimposed structures of the PR/APV complex with those of PR/Ac-PEP and pepsin/pepstatin A complexes suggests a role for Asp215, Asp32, and Ser219 in pepsin, equivalent to Asp25, Asp25', and Asp29 in PR in the binding and stabilization of the pepsin/APV complex.  相似文献   

19.
In an attempt to convert an aspartic proteinase into another class of proteinase, the catalytic residues of porcine pepsin were substituted with the catalytic triad characteristic of a serine proteinase, using trypsin as the model. Computer modeling suggested six possible sites within porcine pepsin sequence for the introduction of the catalytic triad. The six mutants of pepsin were subsequently constructed and examined for their catalytic activities. Among the six mutants, two mutants, D32S/I300H/G302D (MutI) and D32G/S35H/Y75S/I120D (MutJ), showed peptide hydrolysis activities. In comparison to the original activity of pepsin, the kinetic constants of these mutants were very low with K(m) values of 4.10 and 2.10mM, and k(0) values of 22.2 and 18.0 min(-1). In the presence of PMSF, a serine proteinase inhibitor, the activities for these mutants were inhibited by 86.5% and 80.1%, respectively, indicating that the catalytic triad of the trypsin had been successfully introduced into porcine pepsin.  相似文献   

20.
Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号