首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levant B 《Life sciences》2002,71(23):2691-2700
D(2) dopamine receptors are the principal target of drugs used to treat schizophrenia and Parkinson's disease. Recent findings suggest novel drug interactions at D(2) receptors, specifically interactions of monoamine oxidase inhibitors (MAOIs) at a novel binding site that modulates the binding of [3H]quinpirole to the D(2) receptor. That MAOIs inhibit [3H]quinpirole binding challenges the traditional understanding of ligand interactions at dopamine receptors and may shed light on the mechanism of behavioral sensitization to psychostimulants and the pharmacology and toxicity of MAOIs.  相似文献   

2.
Adiponectin production during adipocyte differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) can be used to evaluate the pharmacological activity of anti-diabetic drugs to improve insulin sensitivity. Monoamine oxidase (MAO) inhibitors such as phenelzine and pargyline inhibit adipogenesis in murine pre-adipocytes. In this study, however, we found that selective MAO-A inhibitors, moclobemide and Ro41-1049, and a selective MAO-B inhibitor, selegiline, promoted adiponectin production during adipocyte differentiation in hBM-MSCs, which suggested the anti-diabetic potential of these drugs. In contrast, non-selective MAO inhibitors, phenelzine and tranylcypromine, inhibited adipocyte differentiation of hBM-MSCs. Concomitant treatments of MAO-A and MAO-B selective inhibitors did not change the stimulatory effect on adiponectin production in hBM-MSCs. Taken together, the opposite effects of isotype-selective MAO inhibitors on adiponectin production during adipogenesis in hBM-MSCs may not be directly associated with the inhibitory effects of MAO, suggested that the structure of MAO inhibitors may contain a novel anti-diabetic pharmacophore.  相似文献   

3.
Carbon-11 labeled SL25.1188 is a promising reversible monoamine oxidase-B (MAO-B) radioligand that was recently translated for human positron emission tomography (PET) imaging. Herein, we report the development of a novel fluorinated derivative, namely, [18F](S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one ([18F]FSL25.1188; [18F]6), as a candidate 18F-labeled MAO-B radioligand, and, its subsequent preclinical evaluation in non-human primates (NHP). [18F]6 was produced and isolated (>6 GBq) with high radiochemical purity (>99%), and molar activity (>100 GBq/µmol at time of injection). Autoradiography studies conducted in post-mortem human brain sections revealed [18F]6 binding in MAO-B rich regions. PET imaging study of [18F]6 in NHP showed high brain uptake (SUV > 2.5) as well as a regional brain radioactivity distribution in accordance with MAO-B expression. [18F]6 displayed favorable in vivo kinetics, with an early peak in the time-activity curve followed by progressive wash-out from the NHP brain. Specificity of [18F]6 was investigated in a pre-treatment study with l-deprenyl (1.0 mg/kg) wherein reduced radioligand uptake was observed in all MAO-B rich regions. Results from the current preclinical investigation suggests [18F]6 is a promising MAO-B PET radioligand. Further evaluation of [18F]6 and structurally related 18F-analogs are underway to identify an optimized candidate for clinical research studies.  相似文献   

4.
The parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its corresponding five-membered ring analogue 1-methyl-3-phenyl-3-pyrroline are cyclic tertiary allylamines and good substrates of monoamine oxidase B (MAO-B). The MAO-B catalyzed 2-electron α-carbon oxidation of this class of substrates appears to be dependent on the presence of the allylic π-bond since the corresponding saturated piperidinyl analogue of MPTP is reported not to be an MAO-B substrate. The only saturated cyclic tertiary amine known to act as an MAO-B substrate is the 3,4-cyclopropyl analogue of MPTP, 3-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane. As part of our ongoing studies we have examined the MAO-B substrate properties of the corresponding pyrrolidinyl analogue, 1-methyl-3-phenylpyrrolidine, and the 3,4-cyclopropyl analogue, 3-methyl-1-phenyl-3-azabicyclo[3.1.0]hexane. The results document that both the pyrrolidinyl analogue [Km = 234 μM; Vmax = 8.37 nmol/(min-mg mitochondrial protein)] and the 3,4-cyclopropyl analogue [Km = 148 μM; Vmax = 16.9 nmol/(min-mg mitochondrial protein)] are substrates of baboon liver mitochondrial MAO-B. We also have compared the neurotoxic potential of these compounds in the C57BL/6 mouse. The results led us to conclude that these compounds are not MPTP-type neurotoxins.  相似文献   

5.
Parkinson’s disease is characterised by the death of the nigrostriatal neurons and depletion of striatal dopamine. The standard symptomatic therapy consists of dopamine replacement with l-dopa, the metabolic precursor of dopamine, which represents the most effective treatment. Since monoamine oxidase (MAO) B is a key dopamine metabolising enzyme in the brain, MAO-B inhibitors are often used as adjuvants to l-dopa. In addition to the symptomatic benefits offered by MAO-B inhibitors, these drugs may also possess neuroprotective properties and possibly delay the progression of Parkinson’s disease. Based on the therapeutic use of MAO-B inhibitors, the present study evaluates a series of mono- and disubstituted derivatives of 4(3H)-quinazolinone as potential inhibitors of recombinant human MAO-A and MAO-B. Twelve C6-monosubstituted and nine N3/C6-disubstituted 4(3H)-quinazolinone derivatives were synthesised, which led to the discovery of novel quinazolinone derivatives with micromolar and submicromolar activities as inhibitors of MAO-B. The most potent mono- and disubstituted derivatives exhibited IC50 values of 6.35 μM (7f) and 0.685 μM (8b), respectively. This study identifies suitable substitution patterns for the design of 4(3H)-quinazolinone derivatives as MAO-B inhibitors.  相似文献   

6.
The synthesis and structure–activity relationships of 8-substituted-3-[2-(diarylmethoxyethylidenyl)]-8-azabicyclo[3.2.1]octane derivatives were investigated at the dopamine transporter (DAT), the serotonin transporter (SERT) and norepinephrine transporter (NET). The rigid ethylidenyl-8-azabicyclic[3.2.1]octane skeleton imparted modestly stereoselective binding and uptake inhibition at the DAT. Additional structure–activity studies provided a transporter affinity profile that was reminiscent of the structure–activity of GBR 12909. From these studies, the 8-cyclopropylmethyl group has been identified as a unique moiety that imparts high SERT/DAT selectivity. In this study the 8-cyclopropylmethyl derivative 22e (DAT Ki of 4.0 nM) was among the most potent compounds of the series at the DAT and was the most DAT selective ligand of the series (SERT/DAT: 1060). Similarly, the 8-chlorobenzyl derivative 22g (DAT Ki of 3.9 nM) was found to be highly selective for the DAT over the NET (NET/DAT: 1358).  相似文献   

7.
Different azides and alkynes have been coupled via Cu-catalyzed 1,3-dipolar Huisgen cycloaddition to afford a novel family of N1- and C5-substituted 1,2,3-triazole derivatives that feature the propargylamine group typical of irreversible MAO-B inhibitors at the C4-side chain of the triazole ring. All the synthesized compounds were evaluated against human MAO-A and MAO-B. Structure–activity relationships and molecular modeling were utilized to gain insight into the structural and chemical features that enhance the binding affinity and selectivity between the two enzyme isoforms. Several lead compounds, in terms of potency (submicromolar to low micromolar range), MAO-B selective recognition, and brain permeability, were identified. One of these leads (MAO-B IC50 of 3.54 μM, selectivity MAO-A/MAO-B index of 27.7) was further subjected to reversibility and time-dependence inhibition studies, which disclosed a slow and irreversible inhibition of human MAO-B. Overall, the results support the suitability of the 4-triazolylalkyl propargylamine scaffold for exploring the design of multipotent anti-Alzheimer compounds endowed with irreversible MAO-B inhibitory activity.  相似文献   

8.
In the present study, a series of fourteen 2-mercapto-4(3H)-quinazolinone derivatives was synthesised and evaluated as potential inhibitors of the human monoamine oxidase (MAO) enzymes. Quinazolinone is the oxidised form of quinazoline, and although this class has not yet been extensively explored as MAO inhibitors, it has been shown to possess a wide variety of biological activities. Among the quinazolinone derivatives investigated, seven compounds (IC50?<?1?µM) proved to be potent and specific MAO-B inhibitors, with the most potent inhibitor, 2-[(3-iodobenzyl)thio]quinazolin-4(3H)-one, exhibiting an IC50 value of 0.142?μM. Further investigation showed that this inhibitor is a reversible and competitive inhibitor of MAO-B with a Ki value of 0.068?µM. None of the test compounds were MAO-A inhibitors. Analysis of the structure-activity relationships (SARs) for MAO-B inhibition shows that substitution on the C2 position of quinazolinone with a benzylthio moiety bearing a Cl, Br or I on the meta position yields the most potent inhibitors of the series. In contrast, substitution with the unsubstituted benzylthio moiety (IC50?=?3.03?µM) resulted in significantly weaker inhibition activity towards MAO-B. This study suggests that quinazolinones are promising leads for the development of selective MAO-B inhibitors which may be used for the treatment of neurodegenerative disorders such as Parkinson’s disease.  相似文献   

9.
Summary The distribution of monoamine oxidase (MAO) in the brain of Xenopus laevis tadpoles (stage 52–56) was studied histochemically with a modified Glenner's tryptamine-tetrazolium method. A moderate activity was observed in fibre regions of the striatum and septum (including the medial and lateral forebrain bundles), in the neuropil of the nucleus amygdalae, in the commissura anterior and commissura hippocampi, in the fibre regions of the diencephalon (including the optic chiasma), in the fibre regions of the tectum opticum and the tegmentum of the mesencephalon and in the white substance of the ventral half of the medulla oblongata. A greater MAO activity was found in the neuropil of the entire nucleus praeopticus. In the partes anterior and magnocellularis of this nucleus, MAO positive fibres are present in close contact with the perikarya, indicating a monoaminergic innervation of these neurons. The perikarya themselves did not show MAO activity. In the neurons of the nucleus praeopticus epichiasmaticus, the paraventricular organ (PVO) and nucleus infundibularis dorsalis (NID), only a slight MAO activity has been demonstrated in the perikarya, whereas a strong MAO positivity was found in the intraventricular protrusions and the neuropil. These data indicate the aminergic character of the neurons of these nuclei. From the postoptic fibre region a MAO positive tract was observed towards the developing median eminence and pars intermedia of the hypophysis. The pars nervosa and some cells of the pars distalis also contained MAO. Along the border of the aquaeduct of Silvius and the fourth ventricle, MAO positive liquor-containing neurons are also present.The distribution of acetylcholinesterase (AChE) was investigated in the hypothalamohypophysial region. AChE activity was found in the neuropil of the nucleus praeopticus magnocellularis, in the fibres of the optic chiasma and in the postoptic fibre region. The neurons of the PVO and NID were AChE negative. An AChE positive tract could be traced from the postoptic fibre region to the developing median eminence and pars nervosa. The pars distalis did not show AChE activity. However, in tadpoles reaching the metamorphic climax, ChE activity appeared in certain cells of the pars distalis; this might be related to degenerative phenomena in the acidophilic cells. The absence of AChE activity in the pars intermedia indicates a regulation of MSH release by peptidergic nerves to be unlikely.The stimulating interest and helpful advice of Prof. Dr. P. G. W. J. van Oordt is gratefully acknowledged. Thanks are also due to Mr. H. van Kooten and his co-workers for making the photographs.  相似文献   

10.
1. Changes in MAO and antioxidative enzymes copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) activities were examined in the hypothalamus and the hippocampus of Wistar rats exposed to cold stress (6 °C) for 180 min and heat stress (38 °C) for 60 min.

2. Extreme environmental temperatures caused stressor-specific changes in the hypothalamic and hippocampal MAO and antioxidative enzyme activities, being dependent on the stressor applied (cold or heat) but not on the brain region studied (the hypothalamus or hippocampus).

Keywords: Catalase; Cold stress; Heat stress; Hippocampus; Hypothalamus; Monoamine oxidase; Superoxide dismutase  相似文献   


11.
Summary The electron microprobe microanalyser has been used to measure the concentrations of Ca, P and S in the predentine of young rat incisors. The specimens were prepared as alcohol fixed embedded ultrathin sections, unfixed vacuum embedded dry cut ultrathin sections and as thin cryostat sections. The results show the influence of preparation on the measured compositions and indicate that Ca is tightly bound to the matrix, whereas P can be easily washed out. Measurements along the dentine-predentine border demonstrated zones of Ca enrichment, the average size of which suggests that the zones could be the prestages of calcospherites. A mineralisation mechanism is discussed in which the high Ca concentration activates pyrophosphatase or ATPase before the onset of nucleation.The authors express their thanks to the Deutsche Forschungsgemeinschaft for financial support  相似文献   

12.
Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (Ki = 1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (Ki = 7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (Ki = 0.4 μM) in comparison with MAO-A (Ki = 26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO.  相似文献   

13.
14.
Younho Lee 《Molecular simulation》2013,39(15):1242-1248
Monoamine oxidase A (MAO-A) converts norepinephrine and serotonin to an oxidative form. These monoamine neurotransmitters have important roles in depression. The MAO-A inhibitors have been discovered for neurodegenerative disease therapy. In order to design novel MAO-A inhibitors, in this study, the quantitative structure-activity relationships for the combined series of indoles and pyrroles were elucidated and the structural conditions to show good inhibitory effects on MAO-A were derived. This result can help us design new inhibitors irrespective of their specific moiety.  相似文献   

15.
Single enantiomers of the new 5-methyl-3-aryloxazolidine-2,4-diones have been obtained either by an asymmetric synthesis using the chiral pool strategy or by a semipreparative resolution of the racemic compound by HPLC on an optically active stationary phase. The single enantiomers were assayed for their in vitro monoamine oxidase (hMAO) inhibitory activity and selectivity. The most potent inhibitor among the studied compounds has been found as (5R)-3-phenyl-5-methyl-2,4-oxazolidinedione (compound 1-R) which appeared to be a good antidepressant drug candidate since it inhibited hMAO-A selectively, competitively and reversibly with Ki values in the micromolar range (0.16 ± 0.01 μM). To better understand the enzyme-inhibitor interaction and to explain the efficiency and selectivity of the compounds toward hMAOs, molecular modeling studies were carried out on new, high resolution hMAO-A and hMAO-B crystallographic structures. According to binding energies and inhibition constants obtained from molecular docking calculations, compound 1-R has been found as the most selective MAO-A inhibitor and its weak binding affinities to MAO-B (large Ki values) led to the enhancement in MAO-A selectivity. It bounded in close proximity to FAD in the active site of MAO-A and situated near the aromatic cage by means of π-alkyl interactions with Tyr407 and Phe352 whereas its position in MAO-B was 10 Å far from FAD and it was situated outside the Ile199 gate of the active site. None of the studied compounds showed any cytototoxicity on HepG2 cells at 1 and 5 µM concentrations.  相似文献   

16.
[3H]Harman (1-[3H]methyl-beta-carboline) was used in a novel radioligand binding assay to label selectively and with high affinity monoamine oxidase (MAO) type A. The concentration of the enzyme was determined in six CNS regions of the primate species marmoset (Callithrix jacchus) and of the rat: hypothalamus, hippocampus, cerebellum, cerebral cortex, striatum, and spinal cord. The specific [3H]harman binding in the CNS of the marmoset reveals the same pharmacological profile and other characteristics (affinity, saturability, and reversibility) as in the CNS of the rat. The regional distribution of the [3H]harman binding density (Bmax) in the CNS exhibits a distinct pattern in the marmoset and the rat and a 35 (hypothalamus) to 75% (hippocampus) lower Bmax in the marmoset than in the rat. The Bmax values of [3H]harman binding in the CNS of the marmoset and the rat combined as well as those from visceral organs of the rat (liver, heart, lung, thymus, spleen, and kidney) correlated positively and highly significantly with the respective Vmax values of specific MAO activity of the A type but not of the B type, determined with kynuramine as the substrate. In subcellular fractionation experiments with rat cerebral cortex, the highest [3H]harman binding density (Bmax) and MAO-A activity (Vmax) were detected in mitochondrial fractions and severalfold lower values in the synaptosomal membrane fraction. In conclusion, we suggest that [3H]harman binding is a biochemical tool as a selective marker to quantify MAO-A in the CNS of different mammalian species as well as in extraneuronal tissues.  相似文献   

17.
The purpose of this study was to examine whether monoamine oxidase type B (MAO-B) has a role in striatal dopamine metabolism in animals with a unilateral lesion of the medial forebrain bundle, and whether 2-phenylethylamine (PE) could have a role in amplification of dopamine (DA) responses in DA depleted striatum. Inhibition of MAO-B did not alter DA metabolism in lesioned striata. PE accumulation decreased with loss of DA as long as there was no DA dysfunction. In lesioned striata with dysfunction of DA transmission at the synaptic level, PE accumulation increased,suggesting a compensatory increase in PE synthesis. This increase in PE levels does not appear to be mediated by an increase in the total striatal aromaticl-amino acid decarboxylase (AADC) activity. We conclude that inhibition of MAO-B has no effect on DA metabolism in the hemi-parkinsonian rat striatum and that PE could be involved in the antiparkinsonian action of MAO-B inhibitors.  相似文献   

18.
An administration of 100 to 300 mg/kg doses of iprazid to rats and mice leads in 24 hours to a considerably higher serotonin and noradrenaline content in the brain. Defensive conditioning against this background proceeds in the same way as in control animals but the retention of elaborated reflexes is sharply disturbed. A similar effect is produced by 5-oxytryptophane. An iprazid administration after conditioning does not disturb the retention and subsequent achievement of the reflex. Inclusion of S35-methionine in the total proteins of the mice brain does not change under the influence of iprazid. A conclusion has been drawn that inhibition of monoaminoxidase by iprazid does not prevent the formation and reproduction of temporary connections, but deeply disturbs their fixation. It is suggested that the revealed disturbances of fixation of temporary connections are due to the accumulation of serotonin in the brain, which suppresses the protein synthesis in the synaptosomes or that of specific proteins.  相似文献   

19.
Chloropromazine (CPZ) and imipramine at a concentration of 1×10–3 M inhibit rat brain mitochondrial monoamine oxidase activity in vitro by 70 and 55% respectively, while lithium, even at a concentration of 0.05 M, inhibits the activity of this enzyme very negligibly (4%). In vivo, these drugs at a dose level of 56 mg CPZ, 76 mg Jimipramine and 76 mg lithium chloride/Kg body wt., did not cause any observable variation from normal in brain mitochondrial monoamine oxidase activity.To whom correspondence should be addressed.  相似文献   

20.
Abstract: Intrastriatal injections of kainic acid (KA) were utilized to investigate the cellular localization of postsynaptic dopamine (DA) metabolism by type A and B monoamine oxidase (MAO) in rat striatum. At 2 days postinjection, maximal degeneration of cholinergic and γ-aminobutyric acid (GABA)ergic neurons was observed and found to be associated with a significant decrease in both type A and B MAO activity. However, over the next 8-day period, when only the process of gliosis appeared to be occurring, a selective return to control of type B MAO activity was seen. When the metabolism of [3H]DA (10?7 M) was examined in 8-day KA-lesioned rat striatal slices, an increase in [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) formation was observed. The KA-induced elevation of [3H]DOPAC formation (but not [3H]HVA) was abolished by the DA neuronal uptake inhibitor nomifensine. This is consistent with earlier findings suggesting that HVA is formed exclusively within sites external to DA neurons. Experiments with clorgyline and/or deprenyl revealed that the relative roles of type A and B MAO in striatal DA deamination remained unchanged following KA (90% deamination by type A MAO) even though total deamination was substantially enhanced. At high concentrations of [3H]DA (10?5 M), deamination by type B MAO could be increased to 30% of the total MAO activity; however, this was observed in both control and KA-lesioned striata. These results suggest that KA-sensitive neurons contain type A and/or type B MAO. Moreover, whereas these neurons may metabolize DA, a major portion of postsynaptic DA deamination appears to occur within glial sites of rat striatal tissue. Furthermore, glial cells would appear to contain functionally important quantities of both type A and B MAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号