首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims. We conducted a large registry-based study in California to investigate the association of perinatal factors and childhood leukemia with analysis of two major subtypes, acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). Methods. We linked California cancer and birth registries to obtain information on 5788 cases and 5788 controls matched on age and sex (1:1). We examined the association of birth weight, gestational age, birth and pregnancy order, parental ages, and specific conditions during pregnancy and risk of total leukemia, ALL and AML using conditional logistic regression, with adjustment for potential confounders. Results. The odds ratio (OR) per 1000 g increase in birth weight was 1.11 for both total leukemia and ALL. The OR were highest for babies weighing ≥4500 g with reference <2500 g: 1.59 (95% CI: 1.05–2.40) and 1.70 (95% CI: 1.08–2.68) for total leukemia and ALL, respectively. For AML, increase in risk was also observed but the estimate was imprecise due to small numbers. Compared to average-for-gestational age (AGA), large-for-gestational age (LGA) babies were at slightly increased risk of total childhood leukemia (OR = 1.10) and both ALL and AML (OR = 1.07 and OR = 1.13, respectively) but estimates were imprecise. Being small-for-gestational age (SGA) was associated with reduced risk of childhood leukemia (OR = 0.81, 95% CI: 0.67–0.97) and ALL (OR = 0.77, 95% CI: 0.63–0.94), but not AML. Being first-born was associated with decreased risk of AML only (OR = 0.70; 95% CI: 0.53–0.93). Compared to children with paternal age <25 years, children with paternal age between 35 and 45 years were at increased risk of total childhood leukemia (OR = 1.12; 95% CI: 1.04–1.40) and ALL (OR = 1.23; 95% CI: 1.04–1.47). None of conditions during pregnancy examined or maternal age were associated with increased risk of childhood leukemia or its subtypes. Conclusions. Our results suggest that high birth weight and LGA were associated with increased risk and SGA with decreased risk of total childhood leukemia and ALL, being first-born was associated with decreased risk of AML, and advanced paternal age was associated with increased risk of ALL. These findings suggest that associations of childhood leukemia and perinatal factors depend highly on subtype of leukemia.  相似文献   

2.
Substrate inhibition hinders chitinolytic β-N-acetyl-d-hexosaminidases in producing N-acetyl-d-glucosamine (GlcNAc), the valuable chemical widely applied in medical and food industries. Here we focused on a promising chitinolytic enzyme, OfHex1 from the insect, Ostrinia furnacalis. By structural analysis of OfHex1, five residues nearby the active pocket including V327, E328, Y471, V484 and W490 were chosen and nine mutants including V327G, E328Q, E328A, Y471V, V484R, W490A, W490H, V327G/V484R/W490A and V327G/Y471V/W490H were constructed and recombinantly expressed in Pichia pastoris. The best-performing mutant, W490A, obtained by a higher yield of 5 mg/L, did not show substrate inhibition even when 5 mM of the substrates, (GlcNAc)2–4, were applied. The kcat/Km values for (GlcNAc)2–4 are 239.8, 111.3 and 79.8 s?1 mM?1, respectively. Besides, the pH stability of the mutant ranges from pH 4 to 11 and the thermal stability is up to 50 °C. This work suggests the W490A mutant might be an ideal biocatalyst for GlcNAc production from chitin.  相似文献   

3.
Activation of enzymes by low concentrations of denaturants has been reported for a limited number of enzymes including lipocalin-type prostaglandin D synthase (L-PGDS) and adenylate kinase. During unfolding studies on human biliverdin-IXα reductase it was discovered that the enzyme is activated at low concentrations of urea. Under standard assay conditions the native enzyme displays pronounced substrate inhibition with biliverdin as variable substrate; however in the presence of 3 M urea, the substrate inhibition is abolished and the enzyme exhibits Michaelian kinetics. When the initial rate kinetics with NADPH as variable substrate are conducted in 3 M urea, the Vmax is increased 11-fold to 1.8 μmol/min/mg and the apparent Km for biliverdin increases from 1 to 3 μM. We report the existence of two kinetically distinct folded intermediates between the native and unfolded forms. When the period of incubation with urea was varied prior to measuring enzyme activity, the apparent Vmax was shown to decay to half that seen at zero time with a half life of 5.8 minutes, while the apparent Km for NADPH remains constant at approximately 5 μM. With NADH as cofactor the half life of the activated (A) form was 2.9 minutes, and this form decays in 3 M urea to a less active (LA) form. The apparent Km for NADH increases from 0.33 mM to 2 mM for the A and LA forms. These kinetically distinct species are reminiscent of the activity-enhanced and inactive forms of L-PGDS observed in the presence of urea and guanidine hydrochloride.  相似文献   

4.
《Process Biochemistry》2010,45(1):75-80
Xylanase is an important industrial enzyme. In this research, to improve the thermostability and biochemical properties of a xylanase from Aspergillus niger F19, five arginine substitutions and a disulfide bond were introduced by site-directed mutagenesis. The wild-type gene xylB and the mutant gene xylCX8 were expressed in Pichia pastoris. Compare to those of the wild-type enzyme, the optimal reaction temperature for the mutant enzyme increased from 45 °C to 50 °C, the half-life of the mutant enzyme extended from 10 min to 180 min, and the specific activity increased from 2127 U/mg to 3330 U/mg. However, the Vmax and Km of the mutant xylanase decreased. The enzyme activity in broth obtained from shake flask cultures could be induced to 1850 U/mL in 7 days, which is higher than results reported previously. Furthermore, the highest achievable enzyme activity was 7340 U/mL from 140 g/L of biomass in a 3 L fermentor used in our study.  相似文献   

5.
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the fungal pathogen Candida albicans (Nce103) is involved in a CO2 sensing pathway critical for the pathogen life cycle and amenable to drug design studies. Herein we report an inhibition study of Nce103 with a library of sulfonamides and one sulfamate, showing that Nce103, similarly to the related enzyme from Cryptococcus neoformans Can2, is inhibited by these compounds with KIs in the range of 132 nM–7.6 μM. The best Nce103 inhibitors were acetazolamide, methazolamide, bromosulfanilamide, and 4-hydroxymethylbenzenesulfonamide (KIs < 500 nM). A homology model was generated for Nce103 based on the crystal structure of Can2. The model shows that compounds with zinc-binding groups incorporating less polar moieties and compact scaffolds generate stronger Nce103 inhibitors, whereas highly polar zinc-binding groups and bulkier compounds appear more promising for the specific inhibition of Can2. Such compounds may be useful for the design of antifungal agents possessing a new mechanism of action.  相似文献   

6.
《Cytokine》2015,72(2):132-138
The purpose of this study was to determine if vitamin D status before supplementation influences the cytokine response after supplemental vitamin D. Forty-six reportedly healthy adults (mean(SD); age, 32(7) y; body mass index (BMI), 25.3(4.5) kg/m2; serum 25-hydroxyvitamin D (25(OH)D), 34.8(12.2) ng/mL) were randomly assigned (double blind) to one of three groups: (1) placebo (n = 15), or supplemental vitamin D (cholecalciferol) at (2) 4000 (n = 14) or (3) 8000 IU (n = 17). Supplements were taken daily for 35 days. Fasting blood samples were obtained before (Baseline, Bsl) and 35-days after (35-d) supplementation. Serum 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)D), cytokines, and intact parathyroid hormone with calcium were measured in each blood sample. Supplemental vitamin D increased serum 25(OH)D (4000 IU, ≈29%; 8000 IU, ≈57%) and 1,25(OH)D (4000 IU, ≈12%; 8000 IU, ≈38%) without altering intact parathyroid hormone or calcium. The vitamin D metabolite increases in the supplemental vitamin D groups (n = 31) were dependent on initial levels as serum 25(OH)D (r = −0.63, p < 0.05) and 1,25(OH)D (r = −0.45, p < 0.05) at Bsl correlated with their increases after supplementation. Supplemental vitamin D increased interferon (IFN)-γ and interleukin (IL)-10 in subjects that were vitamin D insufficient (serum 25(OH)D < 29 ng/mL) compared to sufficient (serum 25(OH)D  30 ng/mL) at Bsl. We conclude that supplemental vitamin D increase a pro- and anti-inflammatory cytokine in those with initially low serum 25(OH)D.  相似文献   

7.
《Endocrine practice》2009,15(2):95-103
ObjectiveTo determine the efficacy and safety of commonly prescribed regimens for the treatment of vitamin D insufficiency.MethodsWe performed a retrospective analysis of 306 consecutive patients who were prescribed ergocalciferol (vitamin D2) for correction of vitamin D insufficiency at the Atlanta Veterans Affairs Medical Center between February 2003 and May 2006. Serum levels of parathyroid hormone, 25-hydroxyvitamin D (25-OHD), and calcium were compared before and after treatment with ergocalciferol. Patients who did not have a 25-OHD determination (n = 41) were excluded from analysis. Vitamin D deficiency, insufficiency, and sufficiency were defined as a serum 25-OHD level of < 20 ng/mL, 21 to 29 ng/mL, and > 30 ng/mL, respectively.ResultsWe identified 36 discrete prescribing regimens. The 3 most common regimens were ergocalciferol 50,000 IU once weekly for 4 weeks followed by 50,000 IU once monthly for 5 months (n = 48); ergocalciferol 50,000 IU once monthly for 6 months (n = 80); and ergocalciferol 50,000 IU 3 times weekly for 6 weeks (n = 27). Each of these 3 treatments significantly increased serum 25-OHD (P < .01), but vitamin D sufficiency was achieved in only 38%, 42%, and 82% of study subjects, respectively. Regimens with > 600,000 IU of ergocalciferol given for a mean of 60 ± 40 days achieved sufficiency in 64% of cases, without vitamin D toxicity.ConclusionIn this study, regimens that contained at least 600,000 IU of ergocalciferol appeared to be the most effective in achieving vitamin D sufficiency. Guidelines for the treatment of vitamin D insufficiency in healthy adults should be developed. (Endocr Pract. 2009;15:95-103)  相似文献   

8.
Mutation and immobilization techniques were applied to uridine phosphorylase (UP) from Escherichia coli in order to enhance its thermal stability and hence productivity in a biocatalytic reaction. UP was evolved by iterative saturation mutagenesis. Compared to the wild type enzyme, which had a temperature optimum of 40 °C and a half-life of 9.89 h at 60 °C, the selected mutant had a temperature optimum of 60 °C and a half-life of 17.3 h at 60 °C. Self-immobilization of the native UP as a Spherezyme showed a 3.3 fold increase in thermostability while immobilized mutant enzyme showed a 4.4 fold increase in thermostability when compared to native UP. Combining UP with the purine nucleoside phosphorylase from Bacillus halodurans allows for synthesis of 5-methyluridine (a pharmaceutical intermediate) from guanosine and thymine in a one-pot transglycosylation reaction. Replacing the wild type UP with the mutant allowed for an increase in reaction temperature to 65 °C and increased the reaction productivity from 10 to 31 g l−1 h−1.  相似文献   

9.
A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS–PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The Km of purified ARG II for l-arginine was 5.25 ± 1.12 mM. l-Ornithine and Nω-hydroxy-l-arginine showed mixed inhibition with Ki values 2.16 ± 0.08 and 0.02 ± 0.004 mM respectively. Mn+ 2 and Co+ 2 were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS–PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis.  相似文献   

10.
Tannase production by Bacillus subtilis PAB2, was investigated under solid state fermentation using tamarind seed as sole carbon source and it was found as the highest titer (73.44 U/gds). The enzyme was purified to homogeneity, which showed the molecular mass around 52 kDa (Km = 0.445 mM, Vmax = 125.8 mM/mg/min and Kcat = 2.88 min–1). The enzyme was found stable in a range of pH (3.0–8.0) and temperature (30–70 °C) with an optimal activity at pH 5.0, pI of 4.4 and at 40 °C temperature. It exhibited half-life (t1/2) of 4.5 h at 60 °C. The enzyme comprised a typical secondary structure containing α-helix (9.3%), β-pleated sheet (33.6%) and β-turn (17.2%). The native conformation of the enzyme was alike a 44 nm spherical nanoparticle upon aggregation. Thermodynamic parameters of tannase revealed that it was stable at 40 °C and showed Q10, ΔGd and ΔSd values of 2.08, 99.37 KJ/mol and 252.38 J mol−1 K−1, respectively. Organic solvents were stimulatory with regard to enzyme activity. Moreover, the altered enzyme activity was determined to be correlated with the changes in structural conformation in presence of inducer and inhibitor. Tannase was explored to have no cytotoxicity on Vero cell line as well as rat model study.  相似文献   

11.
The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, which catalyzes the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). In this study, a novel AroA-encoding gene was identified from the deep sea bacterium Alcanivorax sp. L27 through screening the genomic library and termed as AroAA.sp. A phylogenetic analysis revealed that AroAA.sp (1317 bp and 438 amino acids) is a class II AroA. This enzyme exhibited considerable activity between pH 5.5 and pH 8.0 and notable activity at low temperatures. The KM for PEP and IC50 [glyphosate] values (the concentration of glyphosate that inhibited enzyme activity by 50%) of AroAA.sp were 78 μM and 1.5 mM, respectively. Furthermore, site-directed mutagenesis revealed that the G100A mutant had a 30-fold increase in the IC50 [glyphosate] value; while the L105P mutant showed only 20% catalytic activity compared to wild-type AroAA.sp. The specific activity of the wild-type AroAA.sp, the G100A mutant and the L105P mutant were 7.78 U/mg, 7.26 U/mg and 1.76 U/mg, respectively. This is the first report showing that the G100A mutant of AroA displays considerably improved glyphosate resistance and demonstrates that Leu105 is essential for the enzyme's activity.  相似文献   

12.
In the current work nanoparticles (NPs) of α-amylase were generated in an aqueous solution using high-intensity ultrasound, and were subsequently immobilized on polyethylene (PE) films, or polycarbonate (PC) plates, or on microscope glass slides. The α-amylase NPs coated on the solid surfaces have been characterized by ESEM, TEM, FTIR, XPS and AFM. The substrates immobilized with α-amylase were used for hydrolyzing soluble potato starch to maltose. The amount of enzyme introduced in the substrates, leaching properties, and the catalytic activity of the immobilized enzyme were compared. The catalytic activity of the amylase deposited on the three solid surfaces was compared to that of the same amount of free enzyme at different pHs and temperatures. α-Amylase coated on PE showed the best catalytic activity in all the examined parameters when compared to native amylase, especially at high temperatures. When immobilized on glass, α-amylase showed better activity than the native enzyme over all pH and temperature values studied. However, the immobilization on PC did not improve the enzyme activity at any pH and any temperature compared to the free amylase. The kinetic parameters, Km and Vmax were also calculated. The amylase coated PE showed the most favorable kinetic parameters (Km = 5 g L−1 and Vmax = 5E−07 mol mL−1 min−1). In contrast, the anchored enzyme-PC exhibited unfavorable kinetic parameters (Km = 16 g L−1, Vmax = 4.2E−07 mol mL−1 min−1). The corresponding values for amylase-glass were Km = 7 g L−1, Vmax = 1.8E−07 mol mL−1 min−1, relative to those obtained for the free enzyme (Km = 6.6 g L−1, Vmax = 3.3E−07 mol mL−1 min−1).  相似文献   

13.
A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His6-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His6-tagged rNC-CDH1 was purified through a one-step Ni–NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 7451 IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS–PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25–70 °C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The Km value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. kcat remains relatively constant when the chain length changes.  相似文献   

14.
An extracellular α-l-rhamnosidase has been purified to electrophoretic homogeneity from the culture filtrate of Penicillium corylopholum MTCC-2011 using a simple procedure consisting of concentration by ultrafiltration and cation exchange column chromatography on carboxymethyl cellulose. The sodium dodesyl sulphate polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass of 67.0 kDa. The native – polyacrylamide gel electrophoresis analysis also gave a single protein band confirming the purity of the enzyme and also showing that the enzyme is a monomer in the native state. The Km and kcat values of the enzyme were 0.42 mM and 35.7 s?1, respectively, using p-nitrophenyl α-l-rhamnopyranoside as the substrate. The pH and temperature optima of the enzyme were 6.5 and 57.0 °C, respectively. The purified enzyme preparation successfully hydrolyzed naringin and rutin to prunin and quercetin glucoside, respectively. Thus it can be used for the preparation of these pharmaceutically important compounds.  相似文献   

15.
Thermolysin is industrially used for the synthesis of N-carbobenzoxy-l-aspartyl-l-phenylalanine methyl ester (ZDFM), a precursor of an artificial sweetener, aspartame, from N-carbobenzoxy-l-aspartic acid (ZD) and l-phenylalanine methyl ester (FM). We have reported five thermolysin variants [D150A (Asp150 is replaced with Ala), D150E, D150W, I168A, and N227H] with improved activity generated by site-directed mutagenesis of the residues located at the active site [Kusano et al. J Biochem 2009;145:103–13]. In this study, we analyzed the ZDFM synthesis reaction catalyzed by these variants. Steady-state kinetic analysis revealed that in the ZDFM synthesis reaction at pH 7.5, at 25 °C, the molecular activity kcat values of the variants were 1.6–3.8 times higher than that of the wild-type thermolysin (WT), while their Michaelis constant Km values for ZD and FM were almost the same as those of WT. With the initial concentrations of enzyme, ZD, and FM of 0.1 μM, 5 mM, and 5 mM, respectively, the synthesis of ZDFM catalyzed by these variants reached the maximum level at 4 h while that catalyzed by WT did at 12 h. These results suggest that the five thermolysin variants examined are more suitable than WT for use in ZDFM synthesis.  相似文献   

16.
The identification of a novel series of Aurora kinase inhibitors and exploitation of their SAR is described. Replacement of the initial quinazoline core with a pyrimidine scaffold and modification of substituents led to a series of very potent inhibitors of cellular proliferation. MK-0457 (VX-680) has been assessed in Phase II clinical trials in patients with treatment-refractory chronic myelogenous leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) containing the T315I mutation.  相似文献   

17.
18.
Organophosphorus compounds (OPs) are widely used as pesticides because of their ability to inhibit the activity of acetylcholinesterase (AChE) in the nervous system. Thus, AChE is generally used as a biosensor for pesticide detection. Due to the instability of AChE a more stable enzyme would be desirable for robust applications. We investigated the sensitivity of a thermostable carboxylesterase from the archaeon Archaeoglobus fulgidus (AFEST) to seven selected OPs. The IC50 of dichlorvos against AFEST (50.8 ± 2.6 nM) was 10-fold lower than that of the commercially obtained AChE, indicating that AFEST had higher sensitivity. Its sensitivity for the other OPs was lower than AChE. To enhance the sensitivity of AFEST to OPs, site-directed mutations were introduced in the cap domain of AFEST. The sensitivity of mutant N44S/S48V was enhanced toward all seven OPs compared to the wild-type and was higher than AChE for four OPs, including paraoxon (3.3 ± 0.01 nM), dichlorvos (28.0 ± 0.6 nM), profenofos (43.0 ± 1.0 nM), and diazinon (3.0 ± 0.2 nM). The half-lives of AFEST and the mutant N44S/S48V at 37 °C were over 15 d. The interactions between the enzymes and select OPs were investigated by molecular docking. The results demonstrated that AFEST and the mutant N44S/S48V have the potential to be biosensor for OP detection.  相似文献   

19.
《FEBS letters》2014,588(8):1458-1464
Mutations of Cx40 (GJA5) have been identified in people with lone chronic atrial fibrillation including G38D and M163V which were found in the same patient. We used dual whole cell patch clamp procedures to examine the transjunctional voltage (Vj) gating and channel conductance properties of these two rare mutants. Each mutant exhibited slight alterations of Vj gating properties and increased the gap junction channel conductance (γj) by 20–30 pS. While co-expression of the two mutations had similar effects on Vj gating, it synergistically increased γj by 50%. Unlike WTCx40 or M163V, G38D induced activity of a dominant 271 pS hemichannel.  相似文献   

20.
To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the 1H–15N HSQC spectra of the wild-type DHFR–folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250 MPa together with negative activation volumes of ? 4.0 or ? 4.8 mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7 mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号