首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current study investigates the potential to increase the activity of a family 1 carbohydrate esterase on cellulose acetate through fusion to a family 3 carbohydrate binding module (CBM). Specifically, CtCBM3 from Clostridium thermocellum was fused to the carboxyl terminus of the acetyl xylan esterase (AnAXE) from Aspergillus nidulans, and active forms of both AnAXE and AnAXE–CtCBM3 were produced in Pichia pastoris. CtCBM3 fusion had negligible impact on the thermostability or regioselectivity of AnAXE; activities towards acetylated corncob xylan, 4-methylumbelliferyl acetate, p-nitrophenyl acetate, and cellobiose octaacetate were also unchanged. By contrast, the activity of AnAXE–CtCBM3 on cellulose acetate increased by two to four times over 24 h, with greater differences observed at earlier time points. Binding studies using microcrystalline cellulose (Avicel) and a commercial source of cellulose acetate confirmed functional production of the CtCBM3 domain; affinity gel electrophoresis using acetylated xylan also verified the selectivity of CtCBM3 binding to cellulose. Notably, gains in enzyme activity on cellulose acetate appeared to exceed gains in substrate binding, suggesting that fusion to CtCBM3 increases functional associations between the enzyme and insoluble, high molecular weight cellulosic substrates.  相似文献   

2.
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally.  相似文献   

3.
Regioselective deacetylations of nine glycosides catalyzed by acetyl xylan esterase from Bacillus pumilus have been studied. The glycosides were methyl and benzyl glycosides of the tetraacetates of α-D-glucopyranose, α-D-galactopyranose and α-D-mannopyranose, and the methyl glycosides of tetra-O-acetyl-β-D-glucopyranose, tetra-O-acetyl-β-D-galactopyranose and tetra-O-acetyl-α-D-glucopyranose. The kinetics of successive deacetylations was monitored by GLC and 21 sugar acetates have been identified.  相似文献   

4.
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.  相似文献   

5.
以枯草芽胞杆菌CICC 20034为研究对象,对其分泌的高相对分子质量酯酶进行鉴定,并考察诱导剂对其活力的影响。结果表明:枯草芽胞杆菌CICC 20034可分泌一种相对分子质量为1.07×105的酯酶,经蛋白质质谱鉴定为乙酰木聚糖酯酶,单体分相对子质量为3.56×104。在发酵培养基中添加乙酸乙酯和木糖可以显著的促进乙酰木聚糖酯酶的活力,而三丁酸甘油酯和大分子诱导剂——木聚糖、玉米芯粉和壳聚糖对酯酶的活力几乎无促进作用。枯草芽胞杆菌CICC 20034以乙酸乙酯为诱导剂时最高比酶活为0.62 U/mL,为已知报道的野生细菌乙酰木聚糖酯酶的最高酯酶活力。  相似文献   

6.
SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.  相似文献   

7.
Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated xylo-oligosaccharides and complex non-soluble acetylglucuronoxylan. Both enzymes performed optimally at pH 7.0 and 40 °C.Axe2 has a clear preference for acetylated xylo-oligosaccharides (AcXOS) with a high degree of substitution and Axe3 does not show such preference. Axe3 has a preference for large AcXOS (DP 9-12) when compared to smaller AcXOS (especially DP 4-7) while for Axe2 the size of the oligomer is irrelevant. Even though there is difference in substrate affinity towards acetylated xylooligosaccharides from Eucalyptus wood, the final hydrolysis products are the same for Axe2 and Axe3: xylo-oligosaccharides containing one acetyl group located at the non-reducing xylose residue remain as examined using MALDI-TOF MS, CE-LIF and the application of an endo-xylanase (GH 10).  相似文献   

8.
Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format.  相似文献   

9.
Butyrivibrio proteoclasticus is a significant component of the microbial population of the rumen of dairy cattle. It is a xylan‐degrading organism whose genome encodes a large number of open reading frames annotated as fiber‐degrading enzymes. We have determined the three‐dimensional structure of Est2A, an acetyl xylan esterase from B. proteoclasticus, at 2.1 Å resolution, along with the structure of an inactive mutant (H351A) at 2.0 Å resolution. The structure reveals two domains—a C‐terminal SGNH domain and an N‐terminal jelly‐roll domain typical of CE2 family structures. The structures are accompanied by experimentally determined enzymatic parameters against two model substrates, para‐nitrophenyl acetate and para‐nitrophenyl butyrate. The suite of fiber‐degrading enzymes produced by B. proteoclasticus provides a rich source of new enzymes of potential use in industrial settings. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Acetyl esterase was produced by Streptomyces sp. PC22 at comparable levels of about 0.3 U ml−1 using either 1.0% (w/v) birchwood xylan or 1.5% (w/v) corn husks as a carbon source and cultivating at 45 °C, at pH 9 for 3 or 2 days, respectively. The enzyme was purified from culture filtrate to about 54-fold purity by ammonium sulfate precipitation, followed by consecutive chromatography using a Macro-Prep DEAE, t-butyl hydrophobic interaction and hydroxyapatite, respectively. The approximate molecular weight of the purified enzyme was 155 kDa as analyzed by gel filtration, and it contained four identical 34 kDa subunits, as assessed by SDS-PAGE. It had K m and V max values for p-nitrophenyl acetate of 0.43 mM and 70.78 U mg−1 and 7.8 mM and 1,027 U mg−1 for α-naphthyl acetate, respectively. Its optimal pH and temperature were 6.5–7.0 and 50 °C, respectively. It was stable for 30 min at a broad range of pH values, from 5.0 to 9.0, and at temperatures up to 60 °C. The purified enzyme had no other xylanolytic activities. It showed cooperative action on birchwood xylan degradation, when used in combination with xylanase from the same strain and β-xylosidase from Streptomyces sp. CH7. Enhancement was 1.4-fold, compared to the expected amount of individual enzymes alone. This indicates that the enzyme has potential industrial applications, especially for utilizing renewable hemicelluloses containing acetyl xylan for the production of biofuels or other fermentation products.  相似文献   

11.
Cell wall hemicelluloses and pectins are O‐acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O‐acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody‐tissue‐specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall‐bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β‐1,4‐endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1‐expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.  相似文献   

12.
[背景]芽胞杆菌源枯草杆菌蛋白酶(subtilisin carlsberg)、乙酰基木聚糖酯酶(acetyl xylan esterase)和头孢菌素乙酰水解酶(cephalosporin acetyl hydrolase)具有较高的过水解催化活性,有商业开发价值。[目的]挖掘芽胞杆菌菌株中具有过水解酶催化活性的水解酶蛋白基因,为后续制备过水解酶及酶法合成过氧乙酸奠定基础。[方法]利用定向筛选培养基,从植物根际及纳豆产品中筛选产蛋白酶芽胞杆菌候选菌株,并利用RFLP及16S rRNA基因对其进行鉴定。从蛋白酶高产芽胞杆菌菌株中克隆枯草杆菌蛋白酶、乙酰木聚糖醋酶和头孢菌素乙酰水解酶的全长基因。[结果]从植物根际土壤及纳豆产品中共分离到85个候选菌株,RFLP及16S rRNA基因鉴定结果表明候选菌株均为芽胞杆菌,分别属于Bacillus subtilis、Bacillus cereus、Bacillus pumilus和Bacillus megaterium四个类群。从B.subtilis NSYT-3克隆的枯草杆菌蛋白酶基因编码的多肽链全长381个氨基酸,从B.pumilus OSLJ-3克隆得到的乙酰基木聚糖酯酶基因编码的多肽链全长320个氨基酸,从B.subtilis NSYT-3克隆的头孢菌素乙酰水解酶基因编码的多肽链全长318个氨基酸,3D结构模拟表明这3个酶蛋白均具有α/β水解酶折叠家族蛋白结构特点。[结论]芽胞杆菌源具过水解催化活性水解酶基因的克隆,为后续开发酶法合成过氧乙酸工艺奠定了基础。  相似文献   

13.
【目的】从深海沉积物微生物元基因组文库中克隆新的酯酶基因,并进行酶学性质研究。【方法】利用含有三丁酸甘油酯的酯酶选择性筛选培养基,从深海沉积物微生物元基因组文库中筛选得到酯酶阳性Fosmid克隆。对筛选得到的fosmid FL10进行部分酶切构建亚克隆文库,筛选得到酯酶阳性亚克隆pFLS10。PCR扩增目的片段后与pET28a连接构建酯酶基因原核表达质粒,转化大肠杆菌(Escherichia coli)BL21。纯化表达产物并对其进行活性测定及酶学性质研究。【结果】序列分析显示该pFLS10亚克隆质粒含有一段924bp的ORF(Open Reading Frame),与一海洋元基因组文库中筛选出的酯酶ADA70030序列一致性为71%。该酶为一新的低温酯酶,对C4底物(对硝基苯丁酸酯)水解能力最强。该酶最适作用温度为20℃,最适作用pH为7.5,20℃时较为稳定,pH8-10的范围内有良好的pH稳定性,K+、Mg2+对该酶具有一定的激活作用,Mn2+等对其具有不同程度的抑制作用。【结论】应用元基因组技术筛选到了新的酯酶基因fls10并进行了克隆表达,该酶在低温及碱性条件下较为稳定且活力较高,对于工业化生产具有一定的应用潜力。关键词:深海沉积物;元基因组文库;低温酯酶;酶学特征  相似文献   

14.
Chitosan oligosaccharides (oligomers of (GlcNAc)x(GlcN)y) are used in the pharmaceutical, cosmetic and food industries and are reported to have therapeutic benefits. However, it is unknown whether their biological activity depends on the degree of deacetylation or the sequence of residues within the oligomer. We report here the development of a random mutagenesis method for directed evolution of Streptomyces lividans acetyl xylan esterase (AxeA), which we previously showed is able to deacetylate chitinous substrate, in order to obtain chitooligosaccharides with well-defined structural properties. A colorimetric assay was used to pre-screen libraries for p-nitrophenol acetate hydrolysis activity and an HPLC-UV absorbance assay was optimized to subsequently screen for deacetylase activity toward hexa-N-acetyl-glucosamine substrate (GlcNAc)6. Native AxeA and two variants displaying > 50% deacetylation of the oligohexamer substrate after reaction at 50 °C for 24 h in diluted culture supernatant were then selected for detailed analysis of the enzymatic products. A HILIC (hydrophilic interaction chromatography)-mode LC method was developed for profiling the deacetylated chitooligosaccharide products and HILIC-MS/MS sequencing revealed that ca. 30 different deacetylation products ranging from (GlcNAc)5(GlcN)1 to (GlcNAc)1(GlcN)5 and isomers thereof were produced. The AxeA variants produced, on average, 26% more unique products than the native enzyme; however, none were able to fully deacetylate the substrate to make (GlcN)6. The long term goal of this multidisciplinary approach is to improve the activity of chitosan oligosaccharides to an industrially applicable level.  相似文献   

15.
Esterases (EC 3.1.1.x) represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds and are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number of microbial carboxyl esterases have also been discovered and overexpressed. This review summarizes their properties and classification. Special emphasis is given on their application in organic synthesis for the resolution of racemates and prostereogenic compounds. In addition, recent results for altering their properties by directed evolution are presented.  相似文献   

16.
Feruloyl esterases are part of the enzymatic spectrum employed by fungi and other microorganisms to degrade plant polysaccharides. They release ferulic acid and other aromatic acids from these polymeric structures and have received an increasing interest in industrial applications such as in the food, pulp and paper and bio-fuel industries. This review provides an overview of the current knowledge on fungal feruloyl esterases focussing in particular on the differences in substrate specificity, regulation of their production, prevalence of these enzymes in fungal genomes and industrial applications.  相似文献   

17.
The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using “universal” primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.  相似文献   

18.
为提高微生物发酵玉米芯提取木聚糖的效率,本研究采用H2O2预处理结合微生物发酵的方法提取玉米芯中的木聚糖,并通过扫描电镜(SEM)从微观结构初步探讨了H2O2预处理提高微生物发酵提取玉米芯木聚糖的原因。其结果表明:利用4%H2O2预处理玉米芯1小时,木聚糖含量可达40. 21±0. 21 mg/g,较未处理组玉米芯中木聚糖含量提高了87. 72%;4%H2O2预处理结合微生物发酵玉米芯,可显著提高木聚糖得率,其含量可达52. 72 mg/g,较未经H2O2预处理组提高了186. 67%;进一步利用响应面法优化微生物发酵经H2O2预处理玉米芯提取木聚糖的工艺,得到了发酵最佳培养基组成为含水量50%、尿素添加量0. 25%、葡萄糖添加量0. 75%,此条件下木聚糖含量达70. 84 mg/g,较未发酵提高了249. 82%;SEM图像显示H2O2预处理使得玉米芯结构变得疏松,微生物发酵结合H2O2预处理后的玉米芯出现较大孔洞,结构变得更为疏松。因此,H2O2预处理可改善玉米芯结构,促进微生物发酵,提高玉米芯木聚糖的提取效率,为玉米芯木聚糖的高效开发利用提供了参考。  相似文献   

19.
中华稻蝗两地理种群酯酶特性的比较研究   总被引:3,自引:0,他引:3  
对采自江苏徐州和山西临猗两个种群中华稻蝗进行了马拉硫磷敏感性的生物测定,同时对两个种群的酯酶特性进行了比较研究。生物测定结果表明,徐州种群的LD50值(13.00 μg/g虫重)是临猗种群(4.64 μg/g虫重)的2.8倍;用对氧磷、马拉氧磷、西维因及毒扁豆碱等四种抑制剂对该两个种群的酯酶的体外抑制研究表明,两个种群所含酯酶大都为B型酯酶;酯酶动力学研究结果表明,徐州种群动力学参数米氏常数(Km值)和最大反应速度(Vmax值)均较临猗种群为高;用α-乙酸萘酯(α-NA)、α-丁酸萘酯(α-NB)和β-乙酸萘酯(β-NA)三种底物测定酯酶活性,在雌性稻蝗中,徐州种群比临猗种群分别高2.02、1.58和1.28倍,雄性中则分别高2.71、1.67和1.33倍;对两个种群酯酶活性频率分布进行比较,徐州种群中酯酶活性高的个体数远大于临猗种群。我们推测徐州种群酯酶的生化特性可能不同于临猗种群,这可能与地理分布、生态环境和食物条件不同有关,杀虫剂选择压力不同可能也起一定的作用。  相似文献   

20.
AIMS: To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. METHODS AND RESULTS: The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. CONCLUSIONS: The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号