首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amylosucrase (EC 2.4.1.4, ASase), an outstanding sucrose-utilizing transglucosylase in the glycoside hydrolase family 13, can produce glucans with only α-1,4 linkages. Generally, on account of a double-displacement mechanism, ASase can catalyze polymerization, isomerization, and hydrolysis reactions with sucrose as the sole substrate, and has transglycosylation capacity to attach glucose molecules from sucrose to extra glycosyl acceptors. Based on extensive enzymology research, this review presents the characteristics of various ASases, including their microbial metabolism, preparation, and enzymatic properties, and exhibits structure-based strategies in the improvement of activity, specificity, and thermostability. As a vital transglucosylation tool of producing sugars, carbohydrate-based bioactive compounds, and materials, the bioengineering applications of ASases are also systematically summarized.  相似文献   

2.
3.
Amylosucrase (ASase, EC 2.4.1.4) is a glucosyltransferase that hydrolyzes sucrose into glucose and fructose and produces amylose-like glucan polymers from the released glucose. (+)-Catechin is a plant polyphenolic metabolite having skin-whitening and antioxidant activities. In this study, the ASase gene from Deinococcus geothermalis (dgas) was expressed in Escherichia coli, while the recombinant DGAS enzyme was purified using a glutathione S-transferase fusion system. The (+)-catechin glycoside derivatives were synthesized from (+)-catechin using DGAS transglycosylation activity. We confirmed the presence of two major transglycosylation products using TLC. The (+)-catechin transglycosylation products were isolated using silica gel open column chromatography and recycling-HPLC. Two (+)-catechin major transfer products were determined through 1H and 13C NMR to be (+)-catechin-3′-O-α-d-glucopyranoside with a glucose molecule linked to (+)-catechin and (+)-catechin-3′-O-α-D-maltoside with a maltose linked to (+)-catechin. The presence of (+)-catechin maltooligosaccharides in the DGAS reaction was also confirmed via recycling-HPLC and enzymatic analysis. The effects of various reaction conditions (temperature, enzyme concentration, and molar ratio of acceptor and donor) on the yield and type of (+)-catechin glycosides were investigated.  相似文献   

4.
Two types of β-1,3-glucanases, AkLam36 and AkLam33 with the molecular masses of 36 kDa and 33 kDa, respectively, were isolated from the digestive fluid of the common sea hare Aplysia kurodai. AkLam36 was regarded as an endolytic enzyme (EC 3.2.1.6) degrading laminarin and laminarioligosaccharides to laminaritriose, laminaribiose, and glucose, while AkLam33 was regarded as an exolytic enzyme (EC 3.2.1.58) directly producing glucose from polymer laminarin. AkLam36 showed higher activity toward β-1,3-glucans with a few β-1,6-linked glucose branches such as Laminaria digitata laminarin (LLam) than highly branched β-1,3-glucans such as Eisenia bicyclis laminarin (ELam). AkLam33 showed moderate activity toward both ELam and LLam and high activity toward smaller substrates such as laminaritetraose and laminaritriose. Although both enzymes did not degrade laminaribiose as a sole substrate, they were capable of degrading it via transglycosylation reaction with laminaritriose. The N-terminal amino-acid sequences of AkLam36 and AkLam33 indicated that both enzymes belong to the glycosyl hydrolase family 16 like other molluscan β-1,3-glucanases.  相似文献   

5.
In nature, the same biochemical reaction can be catalyzed by enzymes having fundamentally different folds, reaction mechanisms and origins. For example, the third step of the reductive catabolism of pyrimidines, the conversion of N-carbamyl-β-alanine to β-alanine, is catalyzed by two β-alanine synthase (βASase, EC 3.5.1.6) subfamilies. We show that the “prototype” eukaryote βASases, such as those from Drosophila melanogaster and Arabidopsis thaliana, are relatively efficient in the conversion of N-carbamyl-βA compared with a representative of fungal βASases, the yeast Saccharomyces kluyveri βASase, which has a high Km value (71 mM). S. kluyveri βASase is specifically inhibited by dipeptides and tripeptides, and the apparent Ki value of glycyl-glycine is in the same range as the substrate Km. We show that this inhibitor binds to the enzyme active center in a similar way as the substrate. The observed structural similarities and inhibition behavior, as well as the phylogenetic relationship, suggest that the ancestor of the fungal βASase was a protease that had modified its profession and become involved in the metabolism of nucleic acid precursors.  相似文献   

6.
Tapioca starch was modified using branching enzyme (BE) isolated from Bacillus subtilis 168 and Bacillus stearothermophilus maltogenic amylase (BSMA), and their molecular fine structure and susceptibility to amylolytic enzymes were investigated. By BE treatment, the molecular weight decreased from 3.1 × 108 to 1.7 × 106, the number of shorter branch chains (DP 6–12) increased, the number of longer branch chains (DP >25) decreased, and amylose content decreased from 18.9% to 0.75%. This indicated that α–1,4 linkages of amylose and amylopectin were cleaved, and moiety of glycosyl residues were transferred to another amylose and amylopectin to produce branched glucan and BE-treated tapioca starch by forming α–1,6 branch linkages. The product was further modified with BSMA to produce highly-branched tapioca starch with 9.7% of extra branch points. When subject to digestion with human pancreatic α-amylase (HPA), porcine pancreatic α-amylase (PPA) and glucoamylase, highly-branched tapioca starch gave significantly lowered α-amylase susceptibility (7.5 times, 14.4 times and 3.9 times, respectively), compared to native tapioca starch.  相似文献   

7.
8.
《Process Biochemistry》2014,49(10):1630-1636
The present work describes the secretome profiling of a phytopathogenic fungus, Phoma exigua by liquid chromatography coupled tandem mass spectrometry (LC–MS/MS) based proteomics approach to highlight the suites of enzymes responsible for biomass hydrolysis. Mass spectrometry identified 33 proteins in the Phoma secretome when grown on α-cellulose as the sole carbon source. The functional classification revealed a unique extracellular enzyme system mainly belonging to the family of glycosyl hydrolase proteins (52%). This hydrolytic system consisted of cellulases (endo-1,4-β-glucanase, cellobiohydrolase I, exoglucanase, and β-glucosidase), hemicellulases (1,4-β-xylosidase and endo-1,4-β-xylanase) and other hypothetical proteins including GH3, GH5, GH6, GH7, GH11, GH20, GH32 and GH54. The synergistic action of this enzyme cocktail was assessed by the saccharification of alkali treated wheat straw. Since the Phoma secretome has limited β-glucosidase activity, it was supplemented with commercial β-glucosidase. After supplementation, this enzyme complex resulted in high yields of glucose (177.2 ± 1.0 mg/gds), xylose (209.2 ± 1.5 mg/gds) and arabinose (25.2 ± 0.3 mg/gds). The secretome analysis and biomass hydrolysis by P. exigua revealed its unique potential as a source of hydrolytic enzymes for lignocellulosic biomass hydrolysis.  相似文献   

9.
The linear isomalto-oligosaccharides (IMO) with DP2–DP10 were produced by one-step process using engineered fusion enzyme (DXSR) of endo-dextranase and only α-(1–6) glucan synthesizing dextransucrase. The fusion enzyme was successfully expressed in Escherichia coli and characterized. Compared to individual enzymes, DXSR had 150% increased endo-dextranase activity and 98% decreased dextransucrase activity. The partially purified DXSR displayed molecular mass of 240 kDa as analyzed by SDS–PAGE. It showed both enzyme activities on analysis by zymogram. The thermal- and pH-stability of DXSR was around 28 °C and pH at 5.0–6.4, respectively. IMOs production by DXSR was increased by the addition of metal ions such as Fe2+, Li+, K+ and Ni2+, but the enzyme was strongly inhibited by Hg2+ and Ag+. DXSR produced linear IMO with DP2–DP10 using sucrose as a sole substrate. The molecular weight and amount of IMO could be controlled by the sucrose concentration. DXSR gave 30-fold higher production of IMO than that of an equal activity mixture of the two enzymes such as dextranase and dextransucrase.  相似文献   

10.
11.
《Process Biochemistry》2014,49(9):1480-1487
Invertase from Candida guilliermondii MpIIIa was purified and biochemically characterized. The purified enzyme (INV3a-N) is a glycoprotein with a carbohydrate composition comprising nearly 74% of its total molecular weight (MW) and specific activity of 82,027 U/mg of protein. The enzyme displayed optimal activity at pH 5.0 and 65 ˚C. The Km and Vmax values for INV3a-N were 0.104 mM and 10.9 μmol/min/mg of protein, respectively, using sucrose as the substrate. The enzyme retained 50% and 20% of its maximal activity after 168 h and 30 days, respectively, at 50 ˚C. INV3a-N was fully active at sucrose concentrations of 400 mM and the activity of the enzyme dropped slowly at higher substrate concentration. Interestingly, the deglycosylated form of INV3a-N (INV3a-D) displayed 76–92% lower thermostability than that of INV3a-N at all temperatures assayed (50–70 ˚C), and was inhibited at sucrose concentrations of 200 mM. Findings here indicate glycosylation plays an important role, not only in the thermostability of INV3a-N, but also in the inhibition of the enzyme by sucrose. Since the enzyme is active at high sucrose concentrations, INV3a-N may be considered a suitable candidate for numerous industrial applications involving substrates with high sugar content or for improvement of ethanol production from cane molasses.  相似文献   

12.
The aim of the present study is to develop an efficient and cost-effective method for α-arbutin production by using whole-cell of Xanthomonas maltophilia BT-112 as a biocatalyst. Hydroquinone (HQ), substrate for the bioconversion as glucosyl acceptor, was immobilized on H107 macroporous resin to reduce its toxic effect on the cells, and the optimal reaction conditions for α-arbutin synthesis were investigated. When 350 g/L H107 resin (254.5 mM HQ) and 20 g/L (4.2 U/g) of cells were shaken in 10 mL Na2HPO4–KH2PO4 buffer (50 mM, pH 6.5) containing 509 mM sucrose at 35 °C with 150 rpm for 48 h, the final yield of α-arbutin reached 65.9 g/L with a conversion yield of 95.2% based on the amount of HQ supplied. The α-arbutin production was 202% higher than that of the control (free HQ) and the cells maintained its full activity for almost six consecutive batch reactions, indicating a potential for reducing production costs. Additionally, the product was one-step isolated and identified as α-arbutin by 13C NMR and 1H NMR analysis. In conclusion, the combination of whole cells and immobilized hydroquinone (IMHQ) is a promising approach for economical and industrial-scale production of α-arbutin.  相似文献   

13.
The objective of the present study was to determine the action of β-glucans as feed additives on the gene expression profile of some inflammatory-related cytokines from common carp (Cyprinus carpio L.) during the early stages of a non-lethal bacterial infection with Aeromonas salmonicida. β-glucan (MacroGard®), was administered daily to carp (6 mg per kg body weight) in the form of supplemented commercial food pellets for 14 days prior to infection. Control and treated fish were then intraperitoneally injected with PBS or 4 × 108 bacteria per fish and were sampled at time 0 and 6 h, 12 h, 1 day, 3 days and 5 days post-injection. Head kidney and gut were collected and the gene expression patterns for tnfα1, tnfα2, il1β, il6 and il10 were analyzed by quantitative PCR. Results obtained showed that treatment with β-glucans generally down-regulated the expression of all measured genes when compared to their corresponding controls. After injection, highest changes in the gene expression levels were obtained at 6 h; particularly, in head kidney there was higher up-regulation of tnfa1 and tnfa2 in infected fish fed β-glucans in comparison to control feed; however, in gut there was a significant down-regulation of tnfα1, tnfα2, il1β and il6 in infected fish fed β-glucans. Analysis of carp specific antibodies against A. salmonicida 30 days after injection revealed their levels were reduced in the infected β-glucan group. In conclusion, a diet supplemented with β-glucan (MacroGard®) reduced the gene expression levels of some inflammation-related cytokines in common carp. Such a response appears to be dependent of organ studied and therefore the immunostimulant may be preventing an acute and potential dangerous response in gut, whilst enhancing the inflammatory response in head kidney when exposed to A. salmonicida.  相似文献   

14.
Synthesis of maltooligosylsucroses by the recombinant amylomaltase from Corynebacterium glutamicum as a N terminal (His)6 chimera is reported. From the analysis of the products, by TLC and HPLC analysis on a Rezex RSO-Oligosaccharide column, the suitable glucosyl donor was found to be raw tapioca starch. The optimal condition was 2.0% (w/v) sucrose, 2.5% (w/v) raw tapioca starch and 9 U/ml of amylomaltase at 30 °C for 48 h, giving an overall 82% yield of maltooligosylsucrose products. After purified by Bio-Gel P-2 size exclusion column chromatography, the main products were determined by MS and NMR analysis to be maltosyl-, maltotriosyl-, maltotretraosyl- and maltopentaosyl-fructosides (G2F, G3F, G4F and G5F, respectively, where G = glucosyl unit and F = fructose) with an α-1,4 linkage between the added glucosyl unit and the sucrose. The low cariogenic property of these maltooligosylsucrose products was confirmed by analyzing the effect on the synthesis of water insoluble glucan, acid fermentation, plaque formation and cell aggregation of Streptococcus mutans when compared to those exerted by sucrose. Moreover, by adding sucrose to maltooligosylsucrose products at ratios of 1:1, 1:2 and 1:4, the inhibitory effects on glucosyltransferase activity of S. mutans by 7, 33 and 50%, respectively, were observed. These results suggest that the obtained maltooligosylsucrose products have an anticariogenic property and could be used to substitute for sucrose in food or related products.  相似文献   

15.
Succinic acid is a platform chemical of recognized industrial value and accordingly faces a continuous challenge to enable manufacturing from most attractive raw materials. It is mainly produced from glucose, using microbial fermentation. Here, we explore and optimize succinate production from sucrose, a globally applied substrate in biotechnology, using the rumen bacterium Basfia succiniciproducens DD1. As basis of the strain optimization, the yet unknown sucrose metabolism of the microbe was studied, using 13C metabolic flux analyses. When grown in batch culture on sucrose, the bacterium exhibited a high succinate yield of 1 mol mol−1 and a by-product spectrum, which did not match the expected PTS-mediated sucrose catabolism. This led to the discovery of a fructokinase, involved in sucrose catabolism. The flux approach unraveled that the fructokinase and the fructose PTS both contribute to phosphorylation of the fructose part of sucrose. The contribution of the fructokinase reduces the undesired loss of the succinate precursor PEP into pyruvate and into pyruvate-derived by-products and enables increased succinate production, exclusively via the reductive TCA cycle branch. These findings were used to design superior producers. Mutants, which (i) overexpress the beneficial fructokinase, (II) lack the competing fructose PTS, and (iii) combine both traits, produce significantly more succinate. In a fed-batch process, B. succiniciproducens ΔfruA achieved a titer of 71 g L−1 succinate and a yield of 2.5 mol mol−1 from sucrose.  相似文献   

16.
《Inorganica chimica acta》2006,359(9):2760-2770
The mechanism of ruthenium-bis(phosphine) catalyzed enantioselective hydrogenation of olefins was examined using [Ru((R)-BINAP)(H)(MeCN)n(sol)3  n]BF4 (n = 0–3, sol = solvent used in reaction) as catalyst. Tiglic and angelic acids were used as standard α,β-unsaturated acid substrates; (Z)-methyl α-acetamidocinnamate and dimethyl itaconate were used as standard α,β-unsaturated ester substrates. Isotopic labeling studies (deuterium scrambling) indicate that two distinct mechanisms are in operation for α,β-unsaturated acids versus α,β-unsaturated esters. In each case, 5-membered metallocycle intermediates are formed via olefin-hydride insertion. The mechanisms, however, deviate primarily in the activation of dihydrogen, which is strongly affected by the nature of the substrate. Hydrogenation of α,β-unsaturated acids proceed via heterolytic cleavage of dihydrogen, whereas hydrogenation of α,β-unsaturated esters proceed via homolytic cleavage of dihydrogen. A full discussion of the mechanisms is presented.  相似文献   

17.
The purification and characterization of an extracellular α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. was investigated in this report. The α-l-AFase was purified to homogeneity with a purification fold of 1030. The purified α-l-AFase had a specific activity of 20.6 U mg?1. The molecular mass of the enzyme was estimated to be 52.9 kDa and 51.6 kDa by SDS–PAGE and gel filtration, respectively. The optimal pH and temperature of the enzyme were pH 5.0 and 70 °C, respectively. The enzyme was stable over a broad pH range of 4.0–10.0 and also exhibited excellent thermostability, i.e., the residual activities reached 75% after treatment at 60 °C for 1 h. The enzyme showed strict substrate specificity for the α-l-arabinofuranosyl linkage. The Km and Vmax values for p-nitrophenyl (pNP)-α-l-arabinofuranoside were calculated to be 1.43 mM and 68.3 μmol min?1 mg?1 protein, respectively. Furthermore, the gene encoding α-l-AFase was cloned and sequenced and found to contain a catalytic domain belonging to the glycoside hydrolase (GH) family 43 α-l-AFase. The deduced amino acid sequence of the gene showed the highest identity (67%) to the putative α-l-AFase from Neurospora crassa. This is the first report on the purification, characterization and gene sequence of an α-l-AFase from Chaetomium sp.  相似文献   

18.
A novel extracellular α-galactosidase, named Aga-F78, from Rhizopus sp. F78 ACCC 30795 was induced, purified and characterized in this study. This soybean-inducible α-galactosidase was purified to homogeneity by ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), with a yield of 14.6% and a final specific activity of 74.6 U mg−1. Aga-F78 has an estimated relative molecular mass of 78 kDa from SDS-PAGE while native mass of 210 kDa and 480 kDa from non-denaturing gradient PAGE. This α-galactosidase had no N- or O-glycosylated. Amino acid sequences of three internal fragments were determined, and fragment 1, NQLVLDLTR, shared high homology with bacterial and fungal GH-36 α-galactosidases. The optimum pH and temperature on activity of Aga-F78 were 4.8 and 50 °C, respectively. The properties of pH and temperature stability, effect of ions and chemicals were also studied. Furthermore, the resistant to neutral and alkaline proteases and substrate specificity of natural substrates (melibiose, raffinose, stachyose and guar gum) were also studied to enlarged the application of Aga-F78 in more fields. Kinetic studies revealed a Km and Vmax of 2.9 mmol l−1 and 246.1 μmol (mg min)−1, respectively, using pNPG as substrate. To our knowledge, this is the first report of purification and characterization of α-galactosidase from Rhizopus with some special properties, which may aid its utilization in the food and feed industries.  相似文献   

19.
Glucose oxidase (GOx) of Penicillium adametzii LF F-2044.1 recovered by ultrafiltration, was characterized by spectrophotometric and spectrofluorometric methods. It was shown that spectra of GOx from P. adametzii are typical for flavoproteins. Optimal buffer composition was chosen. It was determined that the GOx is the most efficiently interacting with substrate (glucose) in phosphate buffer at pH 7.0 with kkat/KM = 15,217 ± 550 M−1 s−1. P. adametzii GOx fluorescence in the presence of different redox mediators (9,10-phenanthroline-5,6-dione, 9,10-phenanthrenequinone, 1,4-benzoquinone, methylene blue, ferrocene, ferrocenecarboxylic acid, α-methylferrocenemethanol, ferrocenecarboxaldehyde) was evaluated. Maximal differences in fluorescence emission intensity were observed in the presence of ferrocene and 9,10-phenanthrenequinone.  相似文献   

20.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. P. purpurogenum produced one of the highest levels of EG (5.6 U mg-protein?1) with rice straw and corn steep powder as carbon and nitrogen sources, respectively. The extracellular EG was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The purified EG was a monomeric protein with a molecular weight of 37 kDa and showed broad substrate specificity with maximum activity towards lichenan. P. purpurogenum EG showed t1/2 value of 2 h at 70 °C and catalytic efficiency of 118 ml mg?1 s?1, one of the highest levels seen for EG-producing microorganisms. Although EGs have been reported elsewhere, the high catalytic efficiency and thermostability distinguish P. purpurogenum EG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号