首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of l-glutamate and l-lysine. In the last 10 years, genetic engineering and amplification of relevant structural genes have become fascinating methods for the construction of strains with desired genotypes. By cloning and expressing the various genes of the l-lysine pathway in C. glutamicum we could demonstrate that an increase of the flux of l-aspartate semialdehyde to l-lysine could be obtained in strains with increased dehydrodipicolinate synthase activity. By combined overexpression of deregulated aspartate kinase and dihydrodipicolinate synthase, the l-lysine secretion could be increased (10–20%). Recently we detected that in C. glutamicum two pathways exist for the synthesis of dl-diaminopimelate and l-lysine. Mutants defective in one pathway are still able to synthesize enough l-lysine for growth, but the l-lysine secretion is reduced to 50–70%. Using NMR spectroscopy, we could calculate how much of the l-lysine secreted into the medium is synthesized via each pathway. Amplification of the feedback inhibition-insensitive homoserine dehydrogenase and homoserine kinase in a high l-lysine overproducing strain enabled channelling of the carbon flow from the intermediate aspartate semialdehyde towards homoserine, resulting in a high accumulation of l-threonine. For a further flux from l-threonine to l-isoleucine the allosteric control of threonine dehydratase must be eliminated. In addition to all steps considered so far to be important for amino acid overproduction, the secretion into the culture medium also has to be noted. Recently it could be demonstrated that l-glutamate, l-lysine and l-isoleucine are not secreted via passive diffusion but via specific active carrier systems. Analysis of lysine-overproducing C. glutamicum strains indicates that this secretion carrier has a strong influence on the overproduction of this amino acid. Thus, for the construction of strong amino acid overproducing strains by using the gene cloning techniques, the overexpression of the genes for the export systems also seems necessary.  相似文献   

2.
In the two-step fermentative production of vitamin C, its precursor 2-keto-l-gulonic acid (2-KLG) was synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The reconstruction of the amino acid metabolic pathway through completed genome sequence annotation demonstrated that K. vulgare was deficient in one or more key enzymes in the de novo biosynthesis pathways of eight different amino acids (l-histidine, l-glycine, l-lysine, l-proline, l-threonine, l-methionine, l-leucine, and l-isoleucine). Among them, l-glycine, l-proline, l-threonine, and l-isoleucine play vital roles in K. vulgare growth and 2-KLG production. The addition of those amino acids increased the 2-KLG productivity by 20.4%, 17.2%, 17.2%, and 11.8%, respectively. Furthermore, food grade gelatin was developed as a substitute for the amino acids to increase the cell concentration, 2-KLG productivity, and l-sorbose consumption rate by 10.2%, 23.4%, and 20.9%, respectively. As a result, the fermentation period decreased to 43 h in a 7-L fermentor.  相似文献   

3.
S. Morbach  H. Sahm    L. Eggeling 《Applied microbiology》1995,61(12):4315-4320
The biosynthesis of l-isoleucine proceeds via a highly regulated reaction sequence connected with l-lysine and l-threonine synthesis. Using defined genetic Corynebacterium glutamicum strains characterized by different fluxes through the homoserine dehydrogenase reaction, we analyzed the influence of four different ilvA alleles (encoding threonine dehydratase) in vectors with two different copy numbers on the total flux towards l-isoleucine. For this purpose, 18 different strains were constructed and analyzed. The result was that unlike ilvA in vectors with low copy numbers, ilvA in high-copy-number vectors increased the final l-isoleucine yield by about 20%. An additional 40% increase in l-isoleucine yield was obtained by the use of ilvA alleles encoding feedback-resistant threonine dehydratases. The strain with the highest yield was characterized by three hom(Fbr) copies encoding feedback-resistant homoserine dehydrogenase and ilvA(Fbr) encoding feedback-resistant threonine dehydratase on a multicopy plasmid. It accumulated 96 mM l-isoleucine, without any l-threonine as a by-product. The highest specific productivity was 0.052 g of l-isoleucine per g of biomass per h. This comparative flux analysis of isogenic strains showed that high levels of l-isoleucine formation from glucose can be achieved by the appropriate balance of homoserine dehydrogenase and threonine dehydratase activities in a strain background with feedback-resistant aspartate kinase. However, still-unknown limitations are present within the entire reaction sequence.  相似文献   

4.
Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L−1 l-lysine from mannitol at a yield of 0.26 mol mol−1 and a maximum productivity of 2.1 g L−1 h−1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol−1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol−1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.  相似文献   

5.
6.
l-threonine is an essential amino acid for mammals and as such has a wide and expanding application in industry with a fast growing market demand. The major method of production of l-threonine is microbial fermentation. To optimize l-threonine production the fundamental solution is to develop robust microbial strains with high productivity and stability. Metabolic engineering provides an effective alternative to the random mutation for strain development. In this review, the updated information on genetics and molecular mechanisms for regulation of l-threonine pathways in Escherichia coli and Corynebacterium glutamicum are summarized, including l-threonine biosynthesis, intracellular consumption and trans-membrane export. Upon such knowledge, genetically defined l-threonine producing strains have been successfully constructed, some of which have already achieved the productivity of industrial producing strains. Furthermore, strategies for strain construction are proposed and potential problems are identified and discussed. Finally, the outlook for future strategies to construct industrially advantageous strains with respect to recent advances in biology has been considered.  相似文献   

7.
As an important biological methyl group donor, S-adenosyl-l-methionine is used as nutritional supplement or drug for various diseases, but bacterial strains that can efficiently produce S-adenosyl-l-methionine are not available. In this study, Corynebacterium glutamicum strain HW104 which can accumulate S-adenosyl-l-methionine was constructed from C. glutamicum ATCC13032 by deleting four genes thrB, metB, mcbR and Ncgl2640, and six genes metK, vgb, lysCm, homm, metX and metY were overexpressed in HW104 in different combinations, forming strains HW104/pJYW-4-metK-vgb, HW104/pJYW-4-SAM2C-vgb, HW104/pJYW-4-metK-vgb-metYX, and HW104/pJYW-4-metK-vgb-metYX-homm-lysCm. Fermentation experiments showed that HW104/pJYW-4-metK-vgb produced more S-adenosyl-l-methionine than other strains, and the yield achieved 196.7 mg/L (12.15 mg/g DCW) after 48 h. The results demonstrate the potential application of C. glutamicum for production of S-adenosyl-l-methionine without addition of l-methionine.  相似文献   

8.
In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol?1. By supplementing the medium with 1 mg L?1 pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol?1. In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an acetylated variant, N-acetyl-diaminopentane, which reached levels of more than 25% of that of the desired product.  相似文献   

9.
The ddh gene of Corynebacterium glutamicum encoding raesodiaminopimelate meso-diaminopimelate (meso-DAP)-d-dehydrogenase (DDH) involved in the lysine biosynthesis was cloned in a DAP auxotroph (dapD4) of Escherichia coli by complementation of the DAP auxotroph. Deletion analysis revealed that a ~1.7-kb XhoI-KpnI fragment contained the ddh structure gene. The specific activity of DDH was increased fourteen-fold when C. glutamicum was transformed with a recombinant plasmid harbouring the cloned ddh gene. Furthermore, the ddh gene has been sequenced [S. Ishino et al., Nucleic Acids Res., 15, 3917 (1987)] and some properties of the ddh gene are discussed.  相似文献   

10.
Putrescine is widely used in the industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Because the highest titer of putrescine is much lower than that of its precursor l-ornithine reported in microorganisms to date, further work is needed to increase putrescine production in Corynebacterium glutamicum. We first compared 7 ornithine decarboxylase genes and found that the Enterobacter cloacae ornithine decarboxylase gene speC1 was most suitable for putrescine production in C. glutamicum. Increasing NADPH availability and blocking putrescine oxidation and acetylation were chosen as targets for metabolic engineering. The putrescine producer C. glutamicum PUT4 was first constructed by deleting puo, butA and snaA genes, and replacing the fabG gene with E. cloacae speC1. After adaptive evolution with C. glutamicum PUT4, the evolved strain C. glutamicum PUT-ALE, which produced an 96% higher amount of putrescine compared to the parent strain, was obtained. The whole genome resequencing indicates that the SNPs located in the odhA coding region may be associated with putrescine production. The comparative proteomic analysis reveals that the pentose phosphate and anaplerotic pathway, the glyoxylate cycle, and the ornithine biosynthetic pathway were upregulated in the evolved strain C. glutamicum PUT-ALE. The aspartate family, aromatic, and branched chain amino acid and fatty acid biosynthetic pathways were also observed to be downregulated in C. glutamicum PUT-ALE. Reducing OdhA activity by replacing the odhA native start codon GTG with TTG and overexpression of cgmA or pyc458 further improved putrescine production. Repressing the carB, ilvH, ilvB and aroE expression via CRISPRi also increased putrescine production by 5, 9, 16 and 19%, respectively.  相似文献   

11.
12.
When Lemna minor was cultured in the presence of 0.25 mM l-lysine, the concentration of free methionine and formyl and methyl tetrahydrofolate (THFA) were decreased. l-lysine, l-homoserine, l-threonine and l-methionine at concentrations up to 8 mM did not affect N10-formyl THFA synthetase (E.C. 6.3.4.3) and N5,N10-methylene THFA reductase (E.C. 1.1.1.68). In contrast, serine hydroxymethyltransferase (E.C. 2.1.2.1) activity was inhibited by lysine. This inhibition gave a sigmoidal curve when plotted for a range of l-lysine or THFA concentrations. Exogenous lysine also reduced the incorporation of glycine [14C] and serine [3-14C] into free and protein methionine. Lysine, which is known to control synthesis of homocysteine in L. minor, may also regulate production of C-1 units for methionine synthesis by inhibition of serine hydroxymethyltransferase.  相似文献   

13.
14.
15.
Over 40 000 tons of L-lysine are used each year, chiefly as a nutritional supplement in animal feeds. Two major biotechnological processes are used to manufacture lysine: the enzymatic conversion of dl-α-amino-ε-caprolactam, and the direct fermentation of molasses or starch by microbes, especially species of Brevibacteria and Corynebacterium glutamicum. This review focuses on the fermentative processes and describes the development of various mutants which over-produce l-lysine.  相似文献   

16.
17.
Here, we report the engineering of the industrially relevant Corynebacterium glutamicum for putrescine production. C. glutamicum grew well in the presence of up to 500 mM of putrescine. A reduction of the growth rate by 34% and of biomass formation by 39% was observed at 750 mM of putrescine. C. glutamicum was enabled to produce putrescine by heterologous expression of genes encoding enzymes of the arginine- and ornithine decarboxylase pathways from Escherichia coli. The results showed that the putrescine yield by recombinant C. glutamicum strains provided with the arginine-decarboxylase pathway was 40 times lower than the yield by strains provided with the ornithine decarboxylase pathway. The highest production efficiency was reached by overexpression of speC, encoding the ornithine decarboxylase from E. coli, in combination with chromosomal deletion of genes encoding the arginine repressor ArgR and the ornithine carbamoyltransferase ArgF. In shake-flask batch cultures this strain produced putrescine up to 6 g/L with a space time yield of 0.1 g/L/h. The overall product yield was about 24 mol% (0.12 g/g of glucose).  相似文献   

18.
Extracellular DNA (eDNA) is a structural component of the polymeric matrix of biofilms from different species. Different mechanisms for DNA release have been proposed including lysis of cells, lysis of DNA-containing vesicles, and DNA secretion. Here, a genome-wide screen of 3985 non-lethal mutations was performed to identify genes whose deletion alters eDNA release in Escherichia coli. Deleting nlpI, yfeC, and rna increased eDNA from planktonic cultures while deleting hns and rfaD decreased eDNA production. The lipoprotein NlpI negatively affects eDNA release since the overexpression of nlpI decreases eDNA 16 fold while deleting nlpI increases eDNA threefold. The global regulator H-NS is required for eDNA production since DNA was not detected for the hns mutant and production of H-NS restored eDNA production to wild-type levels. Therefore our results suggest that secretion may play a role in eDNA release in E. coli since the effect of the hns deletion on cell lysis (slight decrease) and membrane vesicles (threefold increase) does not account for the reduction in eDNA.  相似文献   

19.
Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity “swaps” for oxidoreductase enzymes utilizing NAD(H) or NADP(H) in the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae. The theoretical yields of all native carbon-containing molecules are considered, as well as theoretical yields of twelve heterologous production pathways in E. coli. Swapping the cofactor specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast—including l-aspartate, l-lysine, l-isoleucine, l-proline, l-serine, and putrescine—and non-native products in E. coli—including 1,3-propanediol, 3-hydroxybutyrate, 3-hydroxypropanoate, 3-hydroxyvalerate, and styrene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号