首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of an on-going project to isolate antibacterial compounds from rare conifer species, a new abietane diterpene, 2β-acetoxyferruginol was isolated from the stem bark of Prumnopitys andina. Molecular modelling studies were conducted to explain some of the NOEs observed in the A-ring of this compound and to support assignment of relative stereochemistry. This new compound had antibacterial activity at 8 μg/ml against two effluxing strains of Staphylococcus aureus, but interestingly was inactive at 128 μg/ml against a wild-type strain and against a methicillin-resistant (MRSA) clinical isolate. We have previously demonstrated that ferruginol is active against these four S. aureus stains and therefore the results indicate that the presence of the acetoxy group has a detrimental effect on antibacterial activity against certain strains. 2β-Acetoxyferruginol was also assayed against Propionibacterium acnes and was active at 4 μg/ml.  相似文献   

2.
An efficient synthesis of 29 new binaphthyl-based neutral, and mono- and di-cationic, peptoids is described. Some of these compounds had antibacterial activities with MIC values of 1.9–3.9 μg/mL against Staphylococcus aureus. One peptoid had a MIC value of 6 μg/mL against a methicillin-resistant strain of S. aureus (MRSA) and a MIC value of 2 μg/mL against vancomycin-resistant strains of enterococci (VRE).  相似文献   

3.
Privileged structure-based libraries have been shown to provide high affinity lead compounds for a variety of important biological targets. The present study describes the synthesis and screening of a 2-aminothiazole based compound library to determine their utility as antimicrobials, focusing on MRSA. Several of the compounds in this series demonstrated improved antimicrobial activity as compared to ceftriaxone (CTX), a β-lactam antibiotic. The most potent compound (21) had MICs in the range of 2–4 μg/ml across a panel of Staphylococcus aureus strains. In addition, trifluoromethoxy substituted aminothiazoles and aminobenzothiazoles were found to be potent antimicrobials with MICs of 2–16 μg/ml.  相似文献   

4.
《Phytomedicine》2014,21(4):443-447
Combinations of two or more drugs, which affect different targets, have frequently been used as a new approach against resistant bacteria. In our work we studied the antimicrobial activity (MIC, MBC) of individual drugs (the phenolic monoterpene thymol, EDTA and vancomycin), of two-drug interactions between thymol and EDTA in comparison with three-drug interactions with vancomycin against sensitive and resistant bacteria. Thymol demonstrated moderate bactericidal activity (MBC between 60 and 4000 μg/ml) while EDTA only exhibited bacteriostatic activity over a range of 60–4000 μg/ml. MICs of vancomycin were between 0.125 and 16 μg/ml against Gram-positive and between 32 and 128 μg/ml against Gram-negative bacteria. Checkerboard dilution and time-kill curve assays were performed to evaluate the mode of interaction of several combinations against Methicillin-resistant Staphylococcus aureus (MRSA NCTC 10442) and Escherichia coli (ATCC 25922). Checkerboard data indicate indifferent interaction against Gram-positive (FICI = 1–1.3) and synergy against Gram-negative bacteria (FICI  0.4), while time kill analyses suggest synergistic effect in different combinations against both types of bacteria. It is remarkable that the combinations could enhance the sensitivity of E. coli to vancomycin 16-fold to which it is normally insensitive. We have provided proof for the concept, that combinations of known antibiotics with modern phytotherapeutics can expand the spectrum of useful therapeutics.  相似文献   

5.
IntroductionA number of plant species, including Cymbopogon schoenanthus, are traditionally used for the treatment of various diseases. C. schoenanthus is currently, traded in the Saudi markets, and thought to have medicinal value. This study aimed at investigating the biological activities of C. schoenanthus against both Gram-positive and Gram-negative bacteria and to identify its chemical ingredients.Materials and methodsThe inhibitory effects of water extracts of C. schoenanthus essential oils were evaluated against ten isolates of both Gram-positive and Gram-negative bacteria using the agar well diffusion and dilution methods. The minimum inhibitory concentration (MIC) was assayed using the Broth microdilution test on five of the ten isolates. The death rates were determined by the time kill assay, done according to the Clinical Laboratory Standards Institute (CLSI) guidelines. The chemical composition of the essential oils of the plant was performed using GC/MS.ResultsThe C. schoenanthus essential oil was effective against Escherichia coli, Staphylococcus aureus, methicillin-sensitive (MSSA) S. aureus (MRSA) and Klebsiella pneumoniae. The essential oil was not effective against Staphylococcus saprophyticus at the highest concentration applied of >150 μg/ml. The MIC values were as follows: 9.37 μg/ml for E. coli 4.69 μg/ml for S. aureus (MRSA), 2.34 mg/ml for MSSA and 2.34 μg/ml for K. pneumoniae. The time-kill assay indicated that there was a sharp time dependent decline in K. pneumoniae counts in the presence of the oil. This is in contrast to a gradual decline in the case of S. aureus under the same conditions. The eight major components of the essential oil were: piperitone (14.6%), cyclohexanemethanol (11.6%), β-elemene (11.6%), α-eudesmol (11.5%), elemol (10.8%), β-eudesmol (8.5%), 2-naphthalenemethanol (7.1%) and γ-eudesmol (4.2%).ConclusionThe results of the present study provide a scientific validation for the traditional use of C. schoenanthus as an antibacterial agent. Future work is needed to investigate and explore its application in the environmental and medical fields. In addition, to evaluating the efficacy of the individual ingredients separately to better understand the underlying mechanism.  相似文献   

6.
BackgroundBacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms.MethodsWe studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis.ResultsThe most potent compounds in the series gave IC50 values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1–1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure–activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier.ConclusionsThese results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development.General significanceWe have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens.  相似文献   

7.
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes resulting in skin inflammation, photoaging, and photocarcinogenesis. The flavonoid luteolin is one of the most potent antioxidative plant polyphenols. We investigated the UV protective and antioxidant properties of luteolin in human keratinocytes in vitro, ex vivo, and in vivo. Spectrophotometric measurements revealed extinction maxima of luteolin in the UVB and UVA range. UV transmission below 370 nm was < 10%. In human skin, luteolin effectively reduced the formation of UVB-induced cyclobutane pyrimidine dimers. The free radical scavenging activity of luteolin was assessed in various cell-free and cell-based assays. In the cell-free DPPH assay the half-maximal effective concentration (EC50) of luteolin (12 μg/ml) was comparable to those of Trolox (25 μg/ml) and N-acetylcysteine (32 μg/ml). In contrast, in the H2DCFDA assay performed with UVB-irradiated keratinocytes, luteolin (EC50 3 μg/ml) was much more effective compared to Trolox (EC50 12 μg/ml) and N-acetylcysteine (EC50 847 μg/ml). Luteolin also inhibited both UVB-induced skin erythema and the upregulation of cyclooxygenase-2 and prostaglandin E2 production in human skin via interference with the MAPK pathway. These data suggest that luteolin may protect human skin from UVB-induced damage by a combination of UV-absorbing, DNA-protective, antioxidant, and anti-inflammatory properties.  相似文献   

8.
《Phytomedicine》2014,21(7):936-941
The in vitro antimicrobial activities of three 3-Benzylchroman derivatives, i.e. Brazilin (1), Brazilein (2) and Sappanone B (3) from Caesalpinia sappan L. (Leguminosae) were assayed, which mainly dealt with synergistic evaluation of aminoglycoside and other type of antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by the three compounds through the Chequerboard and Time-kill curve methods. The results showed that Compounds 1–3 alone exhibited moderate to weak activity against methicillin-susceptible S. aureus (MSSA) and other standard strains by MICs/MBCs ranged from 32/64 to >1024/>1024 μg/ml, with the order of activity as 1 > 2 > 3. Chequerboard method showed significant anti-MRSA synergy of 1/Aminoglycosides (Gentamicin, Amikacin, Etimicin and Streptomycin) combinations with (FICIs)50 at 0.375–0.5. The combined (MICs)50 values (μg/ml) reduced from 32–128/16–64 to 4–8/4–16, respectively. The percent of reduction by MICs ranged from 50% to 87.5%, with a maximum of 93.8% (1/16 of the alone MIC). Combinations of 2 and 3 with Aminoglycosides and the other antibiotics showed less potency of synergy. The dynamic Time-killing experiment further demonstrated that the combinations of 1/aminoglycoside were synergistically bactericidal against MRSA. The anti-MRSA synergy results of the bacteriostatic (Chequerboard method) and bactericidal (time-kill method) efficiencies of 1/Aminoglycoside combinations was in good consistency, which made the resistance reversed by CLSI guidelines. We concluded that the 3-Benzylchroman derivative Brazilin (1) showed in vitro synergy of bactericidal activities against MRSA when combined with Aminoglycosides, which might be beneficial for combinatory therapy of MRSA infection.  相似文献   

9.
A total of 29 novel sulfenamide compounds were synthesized, spectroscopically characterized and evaluated in vitro for antimicrobial activity against various infectious pathogens. Compounds 1b and 2c exhibited potent inhibition against clinical Methicillin-resistant Staphylococcus aureus (MRSA) strains with minimum inhibitory concentration (MIC) values of 1.56 μg/mL.  相似文献   

10.
Novel C(3) propenylamide and propenylsulfonamide cephalosporins have been synthesized and tested for their ability to inhibit the penicillin-binding protein 2′ (PBP2′) from Staphylococcus epidermidis and the growth of a panel of clinically relevant bacterial species, including methicillin-resistant Staphylococcus aureus (MRSA). The most potent compounds inhibited the growth of MRSA strains with minimum inhibitory concentrations (MIC) as low as 1 μg/mL. The structure–activity relationship revealed the potential for further optimization of this new cephalosporin class.  相似文献   

11.
The emergence of bacterial resistance to common antibiotics poses a threat to human health and has rekindled an interest in antimicrobial peptides (AMPs). LHP7, a novel hybrid AMP containing 83 amino acid residues was designed on the basis of the LH28 and plectasin. LHP7 was expressed in Pichia pastoris, the total concentration of secreted protein reached 0.906 g/L after 108 h of methanol induction. Its antimicrobial activity was higher than that of the parent AMPs; the minimal inhibitory concentrations (MICs) of LHP7 against Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus suis were 0.091, 0.023 and 0.18 μM, respectively. The antibacterial activity of LHP7 against clinical MRSA isolates (MICs = 0.73–2.91 μM) was enhanced over that of plectasin. The fractional inhibitory concentration (FIC) indicated a synergistic effect between LHP7 and ampicillin against MRSA (FIC = 0.375), and combinations of LHP7 with gentamicin, rifampin or tetracycline provided evidence of additive effects (FIC = 0.625–1.0). LHP7 exhibited a broad range of pH stability and thermostability, and a hemolytic activity of less than 5% below a concentration of 500 μg/mL. It was resistant to pepsin and papain digestion, but sensitive to trypsin digestion. These results suggest that LHP7 might have potential as a broadly applied and clinically useful antimicrobial agent.  相似文献   

12.
The present report is about Streptomyces sp. isolate ERI-26 isolated from the soil sample of Nilgiri forest, Western Ghats. The methanol extract of ERI-26 showed good antimicrobial activity against tested microbes. The antimicrobial novel anthraquinones were purified by bioactivity-guided fractionation using a silica gel column and preparative HPLC. The compound was characterized and identified by UV, IR, NMR and MASS spectral data. The compound named as 6,61-bis (1,5,7-trihydroxy-3-hydroxymethylanthraquinone), showed significant antimicrobial activities against tested microbes. The isolated compound inhibited the tested bacterial growth, Staphylococcus aureus at 62.5 μg/ml, Staphylococcus epidermidis at 15.62 μg/m, Bacillus subtilis at 62.5 μg/ml, fungi; Trichophyton mentagrophytes at 15.62 μg/m Trichophyton simii at 15.62 μg/ml, Aspergillus niger at. 7.81 μg/ml, Aspergiller flavus at 3.90 μg/ml, Trichophyton rubrum 296 at 62.5 μg/ml, T. rubrum 57/01 at 7.81 μg/ml, Magnaporthe grisea at 15.62 μg/ml. and Botrytis cinerea at 3.90 μg/ml. Isolated anthraquinone compound and its antimicrobial activity were newly reported.  相似文献   

13.
Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH2) and frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC ≤16 μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC50 = 80 ± 6 μM) and 2.2S (LC50 = 75 ± 5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC50 = 167 ± 8 μM for frenatin 2.1S and 169 ± 7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P < 0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.  相似文献   

14.
The aim of this study was to evaluate the antiviral potential of methanolic extract (ME) of Achyranthes aspera, an Indian folk medicine and one of its pure compound oleanolic acid (OA) against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The ME possessed weak anti-herpes virus activity (EC50 64.4 μg/ml for HSV-1 and 72.8 μg/ml for HSV-2). While OA exhibited potent antiherpesvirus activity against both HSV-1 (EC50 6.8 μg/ml) and HSV-2 (EC50 7.8 μg/ml). The time response study revealed that the antiviral activity of ME and OA is highest at 2–6 h post infection. The infected and drug-treated peritoneal macrophage at specific time showed increased level of pro-inflammatory cytokines (IL6 and IL12). Further, the PCR of DNA from infected cultures treated with ME and OA, at various time intervals, failed to show amplification at 48–72 h, similar to that of HSV infected cells treated with acyclovir, indicating that the ME and OA probably inhibit the early stage of multiplication (post infection of 2–6 h). Thus, our study demonstrated that ME and OA have good anti-HSV activity, with SI values of 12, suggesting the potential use of this plant.  相似文献   

15.
Two neolignans, named callislignan A and B together with known C-methyl-flavonoids, a lignan and pentacyclic triterpenoid esters were isolated from the leaves of Callistemon lanceolatus. Their structures were characterized by spectroscopic methods. Callislignan A and B had antibacterial activity against Staphylococcus aureus ATCC25923 and MRSA SK1 with callislignan B having an MIC of 8 μg/mL.  相似文献   

16.
Rhodomyrtone [6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methyl-1-oxobutyl)-9-(2-methylpropyl)-4,9-dihydro-1H-xanthene-1,3(2H)-di-one] from Rhodomyrtus tomentosa (Aiton) Hassk. displayed significant antibacterial activities against Gram-positive bacteria including Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus salivarius. Especially noteworthy was the activity against MRSA with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) ranging from 0.39 to 0.78 μg/ml. As shown for S. pyogenes, no surviving cells were detected within 5 and 6 h after treatment with the compound at 8MBC and 4MBC concentrations, respectively. Rhodomyrtone displays no bacteriolytic activity, as determined by measurement of the optical density at 620 nm. A rhodomyrtone killing test with S. mutans using phase contrast microscopy showed that this compound caused a few morphological changes as the treated cells were slightly changed in color and bigger than the control when they were killed. Taken together, the results support the view that rhodomyrtone has a strong bactericidal activity on Gram-positive bacteria, including major pathogens.  相似文献   

17.
BackgroundPharmacological screening and usage of natural products for the treatment of human diseases has had a long history from traditional medicine to modern drugs. The majority of modern drugs are reported to be mostly from natural products.ObjectiveThe aim of the present study was to evaluate the inhibitory activity of 5-(2,4-dimethylbenzyl) pyrrolidin-2-one (DMBPO) extracted from marine Streptomyces VITSVK5 spp. isolated from sediment samples collected at Marakkanam coast of Bay of Bengal, India.MethodsThe lead compound was isolated by bioactive guided extraction and purified by silica gel column chromatography. Structural elucidation of the lead compound was carried out by using UV, FT-IR, 1H NMR, 13C NMR, DEPT and HR-MS spectral data.ResultsSystematic screening of isolates for antimicrobial activity lead to identification of a potential strain, Streptomyces VITSVK5 spp. (GQ848482). Bioactivity guided extraction yielded a compound DMBPO and its inhibitory activity was tested against selected bacterial and fungal strains. DMBPO showed maximal activity against Escherichia coli with a MIC value of 187 μg/ml, followed by Klebsiella pneumoniae (MIC of 220 μg/ml and 10.3 mm zone of inhibition), Staphylococcus aureus (MIC of >1000 μg/ml and 4.4 mm zone of inhibition) and Bacillus subtilis (MIC of 850 μg/ml and 2.6 mm zone of inhibition). Furthermore, DMBPO was found to be a potent inhibitor of opportunistic fungal pathogens too. It showed a maximum activity against Aspergillus niger with a MIC value of 1 μg/ml and 28 mm zone of inhibition.ConclusionThe result of this study indicates that DMBPO possess antibiotic activity to selected bacterial and fungal pathogens and exhibited better activity against fungi than bacteria.  相似文献   

18.
A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr > Et > Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs = 1–1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC50 = 200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin.  相似文献   

19.
The leaves of Dilobeia thouarsii (Roemer and Schulte), a tree that is endemic to Madagascar (Proteaceae), are used in traditional Malagasy medicine to treat bacterial skin infections and wounds. This study investigated the in vitro antibacterial activities of D. thouarsii leaf extracts and identified the bioactive compounds with the aim of providing a scientific basis for its use against skin diseases. Using broth microdilution method for leaf crude extract and its compounds, we investigated inhibition of the growth of Bacillus cereus, Bacillus megaterium, Staphylococcus aureus, Enterococcus faecalis, Vibrio harveyi, Vibrio fisheri, Salmonella Typhimurium, Salmonella antarctica, Escherichia coli, and Klebsiella pneumoniae. The two purified phenolic compounds from leaf ethyl acetate extracts (1, 2) were found to be more active than the crude extract itself. The structure of the two compounds was elucidated by NMR and mass spectrometry: compound 1 was identified as 4-aminophenol and compound 2 as 4-hydroxybenzaldehyde. A marked inhibitory effect (MIC < 0.1 mg/ml) was found against S. aureus, which is a major agent in skin infections. We observed moderate activities (MIC values of between 0.1 and 0.5 mg/ml) for E. faecalis, Vibrio spp., and Bacillus spp. Neither compound was active against Salmonella spp., E. coli and K. pneumoniae (MICs > 1 mg/ml). To conclude, the high antimicrobial activity of D. thouarsii leaf extracts against S. aureus supports its traditional use to treat skin infections.  相似文献   

20.
A new fused tetracyclic heterocyclic compound, (4bR,10bR)-4b-hydroxy-10b,12-dihydrodibenzo[c,h][2,6]naphthyridine-5,11(4bH,6H)-dione (1), and a known compound, butyl 2-[(benzoyloxy)methyl]benzoate, spatozoate 2, were isolated from the broth culture of Serratia sp. PAMC 25557. The structure of 1 was determined by analyzing spectroscopic data. Compound 1 did not exhibit antimicrobial activity against Escherichia coli, Staphylococcus aureus, or Candida albicans. In addition, up to 100 μg/ml compound 1 did not show any toxicity against Artemia salina larvae. However, compound 1 showed DPPH free radical scavenging activity (IC50 = 16.7 ± 0.34 μg/ml). This was the first report of spatozoate isolation from bacterial sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号