首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-melanocyte-stimulating-hormone (alpha-MSH) is a neuropeptide that induces weight loss via its anorexigenic and hypermetabolic/hyperthermic effects. Two major public health problems of the human population involving energy balance (i.e. middle-aged obesity and aging cachexia) also appear in other mammals, therefore age-related regulatory alterations may also be assumed in the background.Previous studies demonstrated characteristic age-related shifts in the anorexigenic effects of centrally applied alpha-MSH with strong effects in young adult, diminished efficacy in middle-aged and very pronounced responsiveness in old rats. The present study aimed to investigate age-related changes in the acute central thermoregulatory responsiveness to an alpha-MSH injection in rats and to compare them with those of food intake-related responsiveness. Oxygen consumption (VO2), core (Tc) and tail skin temperatures (Ts, indicating heat loss) of male Wistar rats of different age groups (from 2 to 24 months of age), were recorded in an indirect calorimeter complemented by thermocouples upon intracerebroventricular alpha-MSH administration (0, 5 µg) at a slightly subthermoneutral environment (25–26 °C).Acute alpha-MSH-induced rises in VO2 and Tc were most pronounced in the young adult age-group. In these rats the hyperthemic effects were somewhat diminished by an activation of heat loss. Juvenile animals showed weaker hyperthermic responses, middle-aged rats none at all. Alpha-MSH-induced hyperthermia became significant again in old rats.Acute thermoregulatory (hypermetabolic/hyperthermic) responsiveness to alpha-MSH shows a distinct age-related pattern similar to that of acute anorexigenic responsiveness.Thus, our results may also contribute to the explanation of both middle-aged obesity and aging cachexia.  相似文献   

2.
Changes of the anorexigenic and hypermetabolic components of the overall catabolic effect of alpha-MSH were studied in rats as a function of age. In male Wistar rats a 7 day-long intracerebroventricular infusion of alpha-MSH suppressed food intake and caused a fall in body weight in 2 and 3-4 month-old (young) groups, but it was most effective in the 24 month-old group and had hardly any effect in the 12 month-old (middle-aged) animals. In contrast, metabolic rate as well as biotelemetric measurements of core temperature and heart rate revealed the most pronounced hypermetabolic effects of such infusions at age 12 months. The hypermetabolic effect was still high in the oldest group, but low in the younger groups. In conclusion: Changes of the anorexigenic and hypermetabolic effects in the course of aging are not concordant. The overall catabolic activity of alpha-MSH is smallest in the middle-aged and highest in the oldest group.  相似文献   

3.
Obesity of middle-aged mammals is followed at old age by anorexia and cachexia leading to sarcopenia. Complex age- and body composition-related alterations in the regulation of energy homeostasis may be assumed in the background. We aimed to test the possible contribution of age- and body composition-related changes of satiety responses to catabolic brain-gut-axis peptide cholecystokinin (CCK) to these alterations in energy balance during aging. Male Wistar rats (6-8 animals/group) aged 2 months (juvenile), 3 months (young adult), 6 or 12 months (early or late middle-aged), and 24 months (old) were injected intraperitoneally with 5 μg CCK-8 prior to re-feeding after 48-h food-deprivation. CCK suppressed re-feeding in young adult (26.8%), early middle-aged (35.5%), and old (31.4%) animals, but not in juvenile or late middle-aged rats (one-way ANOVA). CCK-resistance of 12 months old rats was prevented by life-long calorie-restriction: CCK suppressed their re-feeding by 46.8%. Conversely, in highfat diet-induced obese 6 months old rats CCK failed to suppress re-feeding. In conclusion, age-related changes in satiety responsiveness to CCK may contribute to the age-related obesity of middle-aged as well as to the anorexia of old animals. CCK-responsiveness is also influenced by body composition: calorie-restriction prevents the resistance to CCK, pre-existing obesity enhances it.  相似文献   

4.
DNA methylation-based age estimators (DNAm ageing clocks) are currently one of the most promising biomarkers for predicting biological age. However, the relationships between cardiorespiratory fitness (CRF), measured directly by expiratory gas analysis, and DNAm ageing clocks are largely unknown. We investigated the relationships between CRF and the age-adjusted value from the residuals of the regression of DNAm ageing clock to chronological age (DNAmAgeAcceleration: DNAmAgeAccel) and attempted to determine the relative contribution of CRF to DNAmAgeAccel in the presence of other lifestyle factors. DNA samples from 144 Japanese men aged 65–72 years were used to appraise first- (i.e., DNAmHorvath and DNAmHannum) and second- (i.e., DNAmPhenoAge, DNAmGrimAge, and DNAmFitAge) generation DNAm ageing clocks. Various surveys and measurements were conducted, including physical fitness, body composition, blood biochemical parameters, nutrient intake, smoking, alcohol consumption, disease status, sleep status, and chronotype. Both oxygen uptake at ventilatory threshold (VO2/kg at VT) and peak oxygen uptake (VO2/kg at Peak) showed a significant negative correlation with GrimAgeAccel, even after adjustments for chronological age and smoking and drinking status. Notably, VO2/kg at VT and VO2/kg at Peak above the reference value were also associated with delayed GrimAgeAccel. Multiple regression analysis showed that calf circumference, serum triglyceride, carbohydrate intake, and smoking status, rather than CRF, contributed more to GrimAgeAccel and FitAgeAccel. In conclusion, although the contribution of CRF to GrimAgeAccel and FitAgeAccel is relatively low compared to lifestyle-related factors such as smoking, the results suggest that the maintenance of CRF is associated with delayed biological ageing in older men.  相似文献   

5.

It is known that there is an age-related progression in diastolic dysfunction, especially prevalent in postmenopausal women, who develop heart failure with preserved ejection fraction (HFpEF, EF?>?50%). Mechanisms and therapies are poorly understood, but there are strong correlations between obesity and HFpEF. We have tested the hypothesis that P21-activated kinase-1 (PAK1) preserves cardiac function and adipose tissue homeostasis during aging in female mice. Previous demonstrations in male mice by our lab that PAK1 activity confers cardio-protection against different stresses formed the rationale for this hypothesis. Our studies compared young (3–6 months) and middle-aged (12–15 months) female and male PAK1 knock-out mice (PAK1?/?) and wild-type (WT) equivalent. Female WT mice exhibited increased cardiac PAK1 abundance during aging. By echocardiography, compared to young WT female mice, middle-aged WT female mice showed enlargement of the left atrium as well as thickening of posterior wall and increased left ventricular mass; however, all contraction and relaxation parameters were preserved during aging. Compared to WT controls, middle-aged PAK1?/? female mice demonstrated worsening of cardiac function involving a greater enlargement of the left atrium, ventricular hypertrophy, and diastolic dysfunction. Moreover, with aging PAK1?/? female mice, unlike male PAK1?/? mice, exhibited increased adiposity with increased accumulation of visceral adipose tissue. Our data provide evidence for the significance of PAK1 signaling as an element in the preservation of cardiac function and adipose tissue homeostasis in females during aging.

  相似文献   

6.
This study characterized age-related alterations in excitation-contraction (EC)-coupling in ventricular myocytes and investigated whether these alterations are affected by the sex of the animal. Voltage-clamp experiments were conducted in myocytes from young adult (approximately 7 mo) and aged (approximately 24 mo) male and female mice. Intracellular Ca(2+) concentrations and unloaded cell shortening were measured at 37 degrees C with fura-2 and a video edge detector. Fractional shortening and Ca(2+) current density were significantly reduced in aged male myocytes compared with those in young adult male cells. In addition, Ca(2+) transients were significantly smaller in aged male myocytes. Sarcoplasmic reticulum (SR) content, assessed by rapid application of 10 mM caffeine, declined with age in male myocytes. However, EC coupling gain and fractional release of SR Ca(2+) were similar in young adult and aged male cells. In contrast to results in male animals, fractional shortening and Ca(2+) current densities were similar in young adult and aged myocytes isolated from female hearts. Furthermore, Ca(2+) transient amplitudes were unaffected by age in female cells. Interestingly, SR Ca(2+) content was elevated in aged female myocytes, and fractional SR Ca(2+) release declined with age in females. However, the gain of EC coupling was not different in myocytes from young adult and aged female mice. These data demonstrate that age-related alterations in EC coupling are more prominent in myocytes from male hearts than in cells from female hearts and suggest that it is important to consider sex as a variable in studies of the effects of aging on cardiac EC coupling.  相似文献   

7.
Two cases of anorexia nervosa associated with Graves' disease   总被引:1,自引:0,他引:1  
In this report on two cases of anorexia nervosa associated with Graves' disease, metabolism and the relationship between the two illness are considered. Case 1 was a 25-year-old female. Anorexia was associated with a stressful life situation following marriage. One year after the onset of anorexia, her condition was diagnosed as Graves' disease. In spite of high levels of serum thyroid hormone, she did not show the clinical signs and symptoms of hyperthyroidism. The hypermetabolic state of Graves' disease seems to be suppressed by the hypometabolism of anorexia. Case 2 was a 17-year-old female whose body weight, due to anorexia, at one time had decreased from 55 kg to 35.2 kg. A rebound from anorexia to bulimia increased her body weight to 80 kg in spite of an association with the hypermetabolic state of Graves' disease. In light of the abovementioned cases, it seems that the clinical picture of Graves' disease is usually hidden by the clinical symptoms of anorexia nervosa.  相似文献   

8.
为观察小鼠组织中过氧化氢酶的活性与年龄的关系,采用高锰酸钾滴定法测定不同年龄(1、4、18月龄)小鼠肝、肾、肺、心、脾、胃、脑组织中过氧化氢酶的活性。结果显示:小鼠过氧化氢酶在不同组织中活性不同,活性高低顺序基本表现为:肝>肾>肺>心、脾、胃>脑;小鼠肺、心、脾、胃、脑各组织中过氧化氢酶的活性在1~4月龄间随年龄增加而增加,在4~18月龄间随年龄增加而降低;小鼠肝、肾组织中过氧化氢酶的活性在1~4月龄间与年龄相关性不显著,在4~18月龄间随年龄增加而降低。结果表明,小鼠肝、肾、肺、心、脾、胃、脑等组织中过氧化氢酶的活性随年龄变化而变化,机体过氧化氢酶活性的降低与机体衰老密切相关。  相似文献   

9.
As human males age, a decline in baroreflex-mediated elevation of blood pressure occurs due, at least in part, to a reduction in alpha-1 adrenergic vasoconstrictor function. Alpha adrenergic constriction is mediated by guanosine triphosphate binding Protein (G Protein) coupled signaling pathways. Alpha-1 A/C, B, and D adrenergic receptor expressions, measured by GeneChip array, are not reduced during aging in renal blood vessels of male or female rats. Alpha-1 A GeneChip expression is greater, at all ages studied, in females than in males. Prazosin binding by alpha-1 adrenergic receptors is greater in young adult female rats than in young adult male rats; however, it is reduced with aging in both male and female rats. G alpha q GeneChip expression declines while expression of adrenergic receptor kinase (GRK2) and tyrosine phosphatases (TyrP) increase with aging in male rats. The declines in alpha-1 adrenergic receptor binding and G alpha q expression and also the increases in GRK2 and TyrP expression likely relate to the age-related decline of vasoconstriction in male rats. The information that the expression of alpha-1 A adrenergic receptors is greater in female rats and (GRK2) expression does not increase during aging could relate to the gender differences in vasoconstrictor function with aging. Gene therapy to ameliorate the age-related decline in renal function could possibly reduce the need for renal dialysis. Signaling pathways such as those reviewed herein may provide an outline of the molecular pathways needed to move toward successful renal gene therapy for aging individuals.  相似文献   

10.
Impaired cardiorespiratory fitness (CRF) is a hallmark characteristic in obese and lean sedentary young women. Peak oxygen consumption (VO2peak) prediction from the six-minute step test (6MST) has not been established for sedentary females. It is recognized that lower-limb muscle strength and power play a key role during functional activities. The aim of this study was to investigate cardiorespiratory responses during the 6MST and CPX and to develop a predictive equation to estimate VO2peak in both lean and obese subjects. Additionally we aim to investigate how muscle function impacts functional performance. Lean (LN = 13) and obese (OB = 18) women, aged 20–45, underwent a CPX, two 6MSTs, and isokinetic and isometric knee extensor strength and power evaluations. Regression analysis assessed the ability to predict VO2peak from the 6MST, age and body mass index (BMI). CPX and 6MST main outcomes were compared between LN and OB and correlated with strength and power variables. CRF, functional capacity, and muscle strength and power were lower in the OB compared to LN (<0.05). During the 6MST, LN and OB reached ~90% of predicted maximal heart rate and ~80% of the VO2peak obtained during CPX. BMI, age and number of step cycles (NSC) explained 83% of the total variance in VO2peak. Moderate to strong correlations between VO2peak at CPX and VO2peak at 6MST (r = 0.86), VO2peak at CPX and NSC (r = 0.80), as well as between VO2peak, NSC and muscle strength and power variables were found (p<0.05). These findings indicate the 6MST, BMI and age accurately predict VO2peak in both lean and obese young sedentary women. Muscle strength and power were related to measures of aerobic and functional performance.  相似文献   

11.
The aim of the study was to examine the possible relationship between I/D polymorphism of ACE gene and selected indices of aerobic capacity among male and female athletes practising winter endurance sports. Sixty-six well-trained athletes (female n = 26, male n = 40), aged 18.4 ± 2.8 years, representing winter endurance sports (cross-country skiing, n = 48; biathlon, n = 8; Nordic combined, n = 10) participated in the study. Genotyping for ACE I/D polymorphism was performed using polymerase chain reaction. Maximal oxygen consumption (VO2max), maximal running velocity (Vmax) and running velocity at anaerobic threshold (VAT4) were determined in an incremental test to volitional exhaustion on a motorized treadmill. The ACE genotype had no significant effect on absolute VO2max, relative VO2max (divided by body mass or fat free body mass), VAT4 or Vmax. No interaction effect of gender x ACE genotype was found for each of the examined aerobic capacity indices. ACE gene variation was not found to be a determinant of aerobic capacity in either female or male Polish, well-trained endurance athletes participating in winter sports.  相似文献   

12.
Yang B  Larson DF  Watson RR 《Life sciences》2004,75(6):655-667
Based on the role of inducible nitric oxide synthase (iNOS) in heart failure, we hypothesized that the elevated expression of iNOS compared to young mice in the myocardium contributes to the age-related decline of left ventricular (LV) function. Cardiac iNOS mRNA and protein expression was singularly identified in old, wild type (WT) male mice (I6-month) and not in young WT male mice (6-month). Characterized with in vivo pressure-volume loops analysis, an age-related LV dysfunction was found in the old WT mice. The LV dysfunction of the aged mice was modified to that of the younger mice by the specific iNOS inhibitors, aminoguanidine (AMG, 10 mg/Kg, i.v. or infusion, n = 15) and S-methyl-isothiourea (MITU, 3 mg/Kg, i.v. n = 7), and declined with L-arginine (10 mg/Kg, i.v. n = 7). All three drugs had no effects on the LV function of young WT mice or old iNOS knockout (KO) mice. The NOx and cGMP levels were significantly higher only in the old WT mice (n = 6) and cGMP levels decreased to normal with AMG administration. In conclusion, these results suggested that the iNOS/NO/cGMP pathway may contribute to ventricular dysfunction during the aging process and that inhibition of iNOS activity significantly improved heart function in aged mice.  相似文献   

13.
Prediction formulae of shivering metabolism (Mshiv) are critical to the development of models of thermoregulation for cold exposure, especially when the extrapolation of survival times is required. Many such formulae, however, have been calibrated with data that are limited in their range of core temperatures (Tc), seldom involving values of less than 36 degrees C. Certain recent studies of cold-water immersion have reported Tc as low as 33.25 degrees C. These data comprise measurements of Tc (esophageal) and mean skin temperature (Ts), and metabolism from 14 males [mean (SD); age = 28 (5) years; height = 1.78 (0.06) m; body mass = 77.7 (6.9) kg; body fat (BF) = 18.4 (4.5)%] during immersion in water as cold as 8 degrees C for up to 1 h and subsequent self-rewarming via shivering under dry blanketed conditions. The data contain 3343 observations with mean (SD) Tc and Ts of 35.92 (0.93) degrees C and 23.4 (8.9) degrees C, respectively, and have been used to re-examine the prediction of Mshiv. Rates of changes of these temperatures were not used in the analysis. The best fit of the formulae, which are essentially algebraic constructs with and without setpoints, are those with a quadratic expression involving Ts. This is consistent with the findings of Benzinger (1969) who demonstrated that the thermosensitivity of skin is parabolic downwards with temperature peaking near a value of 20 degrees C. Formulae that included a multiplicative interaction term between Tc and Ts did not predict as well. The best prediction using 37 degrees C and 33 degrees C as the Tc and Ts setpoints, respectively, was found with BF as an attenuation factor: Mshiv (W x m(-2)) = [155.5 x (37- Tc) + 47.0 x (33 - Ts) - 1.57 x (33 - Ts)2]/(%BF)(0.5).  相似文献   

14.
Chronic renal failure (CRF) markedly accelerates the development of atherosclerosis, but the pathogenesis of uremic atherosclerosis remains to be elucidated. The klotho gene, predominantly expressed in the kidney, plays a key role in regulating aging and the development of age-related diseases in mammals. A loss of klotho results in multiple aging-like phenotypes including atherosclerosis. This study examines the relationship between the klotho expression and the development of accelerated atherosclerosis in uremic state.Eight-week-old apolipoprotein E-deficient (apo-E−/−) male mice underwent 5/6 partial kidney ablation to induce CRF or sham-operation. At 6 wk after nephrectomy, CRF mice showed significantly increased aortic plaque area fraction, aortic root plaque area and aortic cholesterol content as compared with non-CRF mice. Serum urea, total cholesterol and triglyceride concentrations were significantly higher in CRF apo-E−/− mice compared with non-CRF controls. Moreover, the expression of renal klotho gene and the serum levels of klotho protein were markedly decreased in CRF mice compared with controls.These results suggested that CRF favored atherosclerosis in apo-E−/− mice and uremic atherosclerosis was accompanied by down-regulation of klotho expression.  相似文献   

15.
Feeding dysregulation may manifest as either under-nourishment (e.g., anorexia) or excessive eating leading to obesity. Recent studies have suggested a gender-related variance in weight maintenance in response to chronic disease or obesity-related dietary regimens. However it is unclear whether these gender differences in weight management are secondary to appetite-mediated food intake or alternative mechanisms (e.g., exercise, metabolism). In this study, we explored gender-dependent feeding and hormonal responses to dietary restriction (12-h fast) or to an inflammatory stimulus (LPS, 100 microg/kg b.w.; i.p.) in rats. In response to a 12 h fast, female rats increased (p<0.05) total daily food intake above that of male rats by primarily increasing nighttime feeding by 40%, as compared to 10% in males. Consistent with the increased food intake, fasting induced a greater percent increase in female as compared to male plasma ghrelin (141 vs. 65%, p<0.001). In response to LPS, both male and female rats showed similar reductions in total daily food consumption. However LPS (6 h) induced a greater percent increase in plasma leptin in female than male rats (230 vs. 33%, p<0.01), whereas ghrelin was similarly decreased in both females and males (66 vs. 44%). These findings demonstrate sexual dimorphic responses in feeding and appetite-associated hormonal responses to fasting or LPS treatment. Our findings suggest that therapeutic interventions with ghrelin or leptin must be modified according to gender in order to optimally achieve either weight loss for obesity or weight gain/maintenance for chronic illness-associated anorexia.  相似文献   

16.
Aging increases the risk of cardiovascular disease and metabolic syndrome. Alterations in epicardial fat play an important pathophysiological role in coronary artery disease and hypertension. We investigated the impact of normal aging on obesity-related genes in epicardial fat. Sex-specific changes in obesity-related genes with aging in epicardial fat (EF) were determined in young (6 months) and old (30/36 months) female and male, Fischer 344 × Brown Norway hybrid (FBN) rats, using a rat obesity RT2 PCR Array. Circulating sex hormone levels, body and heart weights were determined. Statistical significance was determined using two-tailed Student’s t test and Pearson’s correlation. Our results revealed sex-specific differences in obesity-related genes with aging. Dramatic changes in the expression profile of obesity-related genes in EF with aging in female, but not in male, FBN rats were observed. The older (30 months) female rats had more significant variations in the abundance of obesity-related genes in the EF compared to that seen in younger female rats or both age groups in male rats. A correlation of changes in obesity-related genes in EF to heart weights was observed in female rats, but not in male rats with aging. No correlation was observed to circulating sex hormone levels. Our findings indicate a dysfunctional EF in female rats with aging compared to male rats. These findings, with further functional validation, might help explain the sex differences in cardiovascular risk and mortality associated with aging observed in humans.  相似文献   

17.
Oocytes from aging ovaries contain mitochondria with morphological and genetic flaws. How these flaws relate to phenotypes of oocyte developmental compromise associated with clinical infertility is not well understood. This study was conducted to investigate the role of mitochondria in the developmental compromises observed with female aging using a mouse model of mitochondrial dysfunction. Oocytes obtained from aging (30-40 wk) (C57BL/6J x CBACaH)F1 (B6CBAF1) hybrid female mice were photosensitized with mitochondrial fluorophore rhodamine-123 for variable durations and compared to similarly treated oocytes derived from pubertal mice (4-6 wk). Blastocyst development of normally fertilized oocytes from both age-groups correlated negatively in mathematically unique profiles with irradiation time, with a more sudden decline in development for oocytes from aging mice. Complete inhibition of blastocyst development occurred following a shorter duration of photosensitization for oocytes from aging compared to pubertal animals (60 vs. 90 sec). Prolonged photosensitization resulted in mitochondrial uncoupling and promoted localized generation of reactive oxygen species, mitochondrial permeabilization, and apoptotic phenotypes. Thus, aging oocytes are more developmentally sensitive to mitochondrial damage than pubertal oocytes but undergo similar metabolic and apoptotic responses. These and future findings may encourage further optimization of laboratory-based strategies to minimize mitochondrial injury to oocytes, particularly those from older women, and improve clinical outcomes for women with age-related etiologies of infertility.  相似文献   

18.
We have previously demonstrated that fresh CD8+ T cells proliferate in response to autologous, alloantigen-primed CD4+ T cells, and differentiate into Ts cells, which inhibit the response of fresh T cells to the primary allogeneic stimulator cell but not irrelevant stimulators. Although such Ts do not have discernible cytolytic activity, like classical cytotoxic T cells (Tc) they express CD3 and CD8 on their surface and function in a class I MHC-restricted manner. Our study was an attempt to compare the surface phenotype and mechanism of action of Ts and Tc clones derived from the same individual. Ts clones were generated from donor JK by repeated stimulation of CD8+ T cells with an autologous CD4+ T inducer line specific for an allogeneic lymphoblastoid cell line (LCL). These clones were noncytolytic for either the inducer line or the allogeneic stimulator LCL. Tc clones, generated by direct stimulation of JK CD8+ T cells with the same allogeneic LCL, mediated potent, alloantigen-specific cytolysis. All Tc clones were alpha, beta TCR+, CD3+, CD4-, CD8+, CD11b-, and CD28+. Ts clones were also alpha, beta TCR+, CD3+, and CD8+, but in contrast to Tc clones, Ts clones were CD11b+ and CD28-. When added to MLR both Ts and Tc clones inhibited the response of fresh JK CD4+ T cells to the original but not irrelevant allogeneic LCL. However, Ts inhibited the response of only those CD4+ T cells that shared class I)MHC determinants with the Ts donor, whereas Tc inhibited the response of CD4+ T cells from all responders, regardless of HLA type. Pretreatment of Ts clones with mAb to CD2, CD3, or CD8 blocked suppression, whereas similar pretreatment of Tc clones blocked cytotoxicity in 4-h 51Cr release assays but had no effect on Tc-mediated suppression of the MLR. These results suggest that both Ts and Tc clones can inhibit the MLR but they do so through different mechanisms. Moreover, the maintenance of distinct surface phenotypes on these long term clones suggests that Ts may be a distinct sublineage of CD8+ T cells rather than a variant of CD8+ Tc.  相似文献   

19.

Introduction

Type 2 diabetes mellitus (T2DM) is associated with a reduction in muscle quality. However, there is inadequate empirical evidence to determine whether changes in muscle quality following exercise are associated with improvement in cardiorespiratory fitness (CRF) in individuals with T2DM. The objective of this study was to investigate the association between change in muscle quality following a 9-month intervention of aerobic training (AT), resistance training (RT) or a combination of both (ATRT) and cardiorespiratory fitness (CRF) in individuals with T2DM.

Material and Methods

A total of 196 participants were randomly assigned to a control, AT, RT, or combined ATRT for a 9-months intervention. The exposure variable was change in muscle quality [(Post: leg muscle strength/leg muscle mass)-[(Pre: leg muscle strength/leg muscle mass)]. Dependent variables were change in CRF measures including absolute and relative VO2peak, and treadmill time to exhaustion (TTE) and estimated metabolic equivalent task (METs).

Results

Continuous change in muscle quality was independently associated with change in absolute (β = 0.015; p = 0.019) and relative (β = 0.200; p = 0.005) VO2peak, and TTE (β = 0.170; p = 0.043), but not with estimated METs (p > 0.05). A significant trend was observed across tertiles of change in muscle quality for changes in absolute (β = 0.050; p = 0.005) and relative (β = 0.624; p = 0.002) VO2peak following 9 months of exercise training. No such association was observed for change in TTE and estimated METs (p > 0.05).

Discussion

The results from this ancillary study suggest that change in muscle quality following exercise training is associated with a greater improvement in CRF in individuals with T2DM. Given the effect RT has on increasing muscle quality, especially as part of a recommended training program (ATRT), individuals with T2DM should incorporate RT into their AT regimens to optimize CRF improvement.

Trial Registration

Clinicaltrials.gov NCT00458133  相似文献   

20.
Effects of aging on the biological discrimination between calcium (Ca) and strontium (Sr) by the kidneys and bone were studied in male and female rats of 5 to 50 wk of age by examining Sr/Ca ratios in the plasma, urine, and bone. The Ca-Sr discrimination at the reabsorption process in the kidneys was not affected by aging in male or female rats. On the other hand, discrimination between the two elements was shown to be age-related at the absorption process in the digestive tract, and became more strict with age. The reverse situation was observed in the discrimination of Ca and Sr in the femur; younger rats discriminated the two elements more strictly than older animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号