共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael Wigerius Naveed Asghar Wessam Melik Magnus Johansson 《European journal of cell biology》2013,92(6-7):213-221
Neurite outgrowth is mediated by dynamic changes of the cytoskeleton and is largely controlled by Rho GTPases and their regulators. Here, we show that the polarity protein Scribble controls PC12 cell neurite outgrowth in response to nerve growth factor. Scribble knockdown decreases neurite numbers and increases neurite length. This effect is linked to TrkA the cognate receptor for NGF as pharmacological inhibition of phosphorylated TrkA (pTrkA) reduces Scribble expression. Moreover, Scribble forms a complex with the MAPK components ERK1/2 in a growth factor dependent manner. In RNAi experiments where Scribble expression is efficiently depleted sustained ERK1/2 phosphorylation is reduced. Conversely, siRNA with intermediate Scribble silencing efficiency fails to match this effect indicating that ERK1/2 activation depends on basic Scribble protein levels. Finally, Scribble translocates to the plasma membrane in response to growth factor where it complexes with HRas and Rac1 suggesting that the phenotype activated by loss of Scribble may be a result of altered GTPase activity. Together, these results demonstrate a novel role for Scribble in neurite outgrowth of PC12 cells. 相似文献
2.
K562 cells can be used as a model of erythroid differentiation on being induced by hemin. We found that the level of annexin1 gene expression was notably increased during this indicated process. To test the hypothesis that annexin1 can regulate erythropoiesis, K562 cell clones in which annexin1 was stably increased and was knocked down by RNAi were established, respectively. With analysis by hemoglobin quantification, benzidine staining, and marker gene expression profile determination, we confirmed that hemin-induced erythroid differentiation of K562 cells was modestly stimulated by overexpression of annexin1 while it was significantly blocked by knock down of annexin1. Further studies revealed that the mechanisms of annexin1 regulation of the erythroid differentiation was partially related to the increased ERK phosphorylation and expression of p21(cip/waf), since specific inhibitor of MEK blocked the function of annexin1 in erythroid differentiation. We concluded that annexin1 exerted its erythropoiesis regulating effect by ERK pathway. 相似文献
3.
The molecular mechanism of neuritogenesis has been extensively studied but remains unclear. In this study, we identified Mob2 protein which plays a significant role in promoting neurite formation in Neuro2A (N2A) cells. Our results showed that Mob2 was expressed in developing N2A cells. To study whether Mob2 was involved in neurite formation, we downregulated Mob2 expression using RNA interference and found that neurite formation decreased in low serum induced N2A cells. In addition, we found that overexpression of Mob2 promoted neurite formation in N2A cells. Furthermore, downregulation of Mob2 expression altered the rearrangement of the actin cytoskeleton and decreased the expression of phosphorylated Moesin. Together, these results provide information on the role of Mob2 in mediating neurite formation. 相似文献
4.
5.
6.
Yuanyuan Wei Xiaolin Zhang Shujuan Wen Shaode Huang Quanfang Huang Shengjuan Lu Facheng Bai Jinlan Nie Jinbin Wei Zhongpeng Lu Xing Lin 《Journal of cellular biochemistry》2019,120(9):14936-14945
The present study was to investigate the inhibitory effect of methyl helicterate (MH) on hepatic stellate cells (HSC-T6), primarily elucidating the underlying mechanism of MH against liver fibrosis. HSC-T6 cells were activated by platelet-derived growth factor (PDGF) stimulation, and then the effects of MH on cell viability, cytomembrane integrity, colony, migration, apoptosis, and cell cycle were detected. Moreover, the regulative mechanism of MH on HSCs was investigated by detecting the activation of the extracellular signal-regulated kinase (ERK1/2) signaling pathway. The results showed that MH significantly inhibited HSC-T6 cell viability and proliferation in a concentration-dependent manner. It notably promoted the release of lactate dehydrogenase, destroying cell membrane integrity. MH also markedly inhibited HSC-T6 cell clonogenicity and migration. Moreover, MH treatment significantly induced cell apoptosis and arrested cell cycle at the G2 phase. The further study showed that MH inhibited the expression of ERK1, ERK2, c-fos, c-myc, and Ets-1, blocking the ERK1/2 pathway. In conclusion, this study demonstrates that MH significantly inhibits HSC activation and promotes cell apoptosis via downregulation of the ERK1/2 signaling pathway. 相似文献
7.
Gu J Zhao Y Isaji T Shibukawa Y Ihara H Takahashi M Ikeda Y Miyoshi E Honke K Taniguchi N 《Glycobiology》2004,14(2):177-186
A rat pheochromocytoma cell line (PC12), when transfected with beta1,4-N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulted in the suppression of neurite outgrowth induced by costimulation of epidermal growth factor (EGF) and integrins. The neurite outgrowth was restored by the overexpression of a constitutively activated mitogen- or extracellular signal-regulated kinase kinase-1 (MEK-1). Consistent with this, the EGF receptor (EGFR)-mediated ERK activation was blocked in GnT-III transfectants. Conversely, the overexpression of dominant negative MEK-1 or treatment with PD98059, a specific inhibitor of MEK-1, inhibited neurite outgrowth in controls transfected with mock. Furthermore GnT-III activity is required for these inhibitions, because the overexpression of a dominant negative GnT-III mutant (D321A) failed to reduce neurite outgrowth and EGFR-mediated ERK activation. Lectin blot analysis confirmed that EGFR from wild-type GnT-III transfectants had been modified by bisecting GlcNAc in its N-glycan structures. This modification led to a significant decrease in EGF binding and EGFR autophosphorylation. Collectively, the results constitute a comprehensive body of evidence to show clearly that the overexpression of GnT-III prevents neurite outgrowth induced by costimulation of EGF and integrins through the Ras/MAPK activation pathway and indicates that GnT-III may be an important regulator for cell differentiation in neural tissues. 相似文献
8.
Ping Xu Riqiang Bao Yaqiong Zhang Enhang Lu Fen Feng Luyin Zhang Jiaheng Li Jing Wang Ximin Tan Min Tang Chuan Hu Gang Li Chunping Zhang 《Molecular reproduction and development》2019,86(6):714-726
Prolyl oligopeptidase (POP), one of the most widely distributed serine endopeptidases, is highly expressed in the ovaries. However, the physiological role of POP in the ovaries is not clear. In this study, we investigated the significance of POP in the corpus luteum. Murine luteal cells were cultured in vitro and treated with a POP selective inhibitor, (2S)‐1[[(2 S)‐1‐(1‐oxo‐4‐phenylbutyl)‐2‐pyrrolidinyl carbonyl]‐2‐pyrrolidinecarbonitrile (KYP‐2047). We found that KYP‐2047 treatment decreased progesterone secretion. In contrast, POP overexpression increased progesterone secretion. Three essential steroidogenic enzymes, including p450 cholesterol side‐chain cleavage enzyme (CYP11A), 3β‐hydroxysteroid dehydrogenase (3β‐HSD), and the steroidogenic acute regulatory protein (StAR), were regulated by POP. Further studies showed that POP overexpression increased ERK1/2 phosphorylation and increased the expression of steroidogenic factor 1 (SF1), while KYP‐2047 treatment decreased ERK1/2 phosphorylation and SF1 expression. To clarify the role of ERK1/2 signaling in POP‐regulated progesterone synthesis, U0126‐EtOH, an inhibitor of the ERK signaling pathway, was used to treat luteal cells. We found that U0126‐EtOH decreased progesterone production and the expression of steroidogenic enzymes and SF1. POP overexpression did not reverse the effects of U0126‐EtOH. Overall, POP regulates progesterone secretion by stimulating the expression of CYP11A, 3β‐HSD, and StAR in luteal cells. ERK signaling and downstream SF1 expression contribute to this process. 相似文献
9.
10.
Ethier C Labelle Y Poirier GG 《Apoptosis : an international journal on programmed cell death》2007,12(11):2037-2049
Poly(ADP-ribose) polymerase-1 (PARP-1) hyper-activation promotes cell death but the signaling events downstream of PARP-1
activation are not fully identified. To gain further information on the implication of PARP-1 activation and PAR synthesis
on signaling pathways influencing cell death, we exposed HeLa cells to the DNA alkylating agent N-methyl-N′-methyl-nitro-N-nitrosoguanidine (MNNG). We found that massive PAR synthesis leads to down-regulation of ERK1/2 phosphorylation, Bax translocation
to the mitochondria, release of cytochrome c and AIF and subsequently cell death. Inhibition of massive PAR synthesis following MNNG exposure with the PARP inhibitor
PJ34 prevented those events leading to cell survival, whereas inhibition of ERK1/2 phosphorylation by inhibiting MEK counteracted
the cytoprotective effect of PJ34. Together, our results provide evidence that PARP-1-induced cell death by MNNG exposure
in HeLa cells is mediated in part through inhibition of the MEK/ERK signaling pathway and that inhibition of massive PAR synthesis
by PJ34, which promotes sustained activation of ERK1/2, leads to cytoprotection. 相似文献
11.
12.
13.
Yuan-Yuan Fu Bian-Hong Hu Kun-Lin Chen Hui-Xia Li 《Journal of cellular biochemistry》2019,120(2):1122-1132
The adipokine Chemerin has been reported to regulate differentiation and metabolism of adipocytes, but the mechanism underlying lipolysis is still largely unknown. The purpose of this study was to explore whether ERK1/2 pathway is involved in regulating Chemerin during bovine intramuscular mature adipocyte lipolysis. Intramuscular mature adipocytes of dairy bull calves were cultured in vitro and were treated with Chemerin or U0126, which is an inhibitor of ERK1/2 pathway. The results showed that TG content in cells was significantly decreased, glycerol and free fatty acid were significantly increased in cell culture media, and the expression of phosphorylated ERK1/2 in cells was increased in Chemerin-treated group, suggested that ERK1/2 pathway was involved in regulation of lipolysis by Chemerin. In addition, the expression of lipolytic-related critical factors ATGL, HSL, LPL, PPARα, UCP3, and CPT1 were upregulated, but the expression of adipogenic key factors, including PPARγ and C/EBPα were downregulated by Chemerin. Interestingly, all the effects of Chemerin on genes expression in intramuscular mature adipocytes or fat tissue were inhibited by U0126, showed that the function of Chemerin to promote adipose decomposition will be significantly weakened if the ERK1/2 pathway is suppressed, and confirmed that ERK1/2 pathway is involved in mediate Chemerin-enhanced lipolysis. In conclusion, the study demonstrated that Chemerin induce intramuscular mature adipocytes lipolysis through activation of the ERK1/2 pathway. Our research at least provide partial mechanisms of Chemerin on lipolysis and deposition of intramuscular fat tissue of dairy bull calves. 相似文献
14.
Mariêve Picard Ryan J. Petrie Judith Antoine-Bertrand Etienne Saint-Cyr-Proulx Jose-France Villemure Nathalie Lamarche-Vane 《Cellular signalling》2009,21(12):1961-1973
Netrin-1 attracts or repels growing axons during development. The UNC5 receptors mediate the repulsive response, either alone or in complex with DCC receptors. The signaling mechanisms activated by UNC5 are poorly understood. Here, we examined the role of Rho GTPases in UNC5a signaling. We found that UNC5a induced neurite outgrowth in N1E-115 neuroblastoma cells in a netrin-1- and Rac1-dependent manner. UNC5a lacking its cytoplasmic tail also mediated this effect. In fibroblasts, UNC5a was able to activate RhoA and to a lower extent Rac1 and Cdc42 in response to netrin-1. Using Fluorescence Resonance Energy Transfer (FRET) intermolecular probes, we visualized the spatial and temporal activation of Rac1, Cdc42 and RhoA in live N1E-115 cells expressing UNC5a during neurite outgrowth. We found that Rac1 but not Cdc42 was transiently activated at the leading edge of the cell during neurite initiation. However, at later times when well-developed neurites were formed, active RhoA was found in the cell body and at the base of the neuronal leading process in UNC5a-expressing cells. Together, these findings demonstrate that the netrin-1 receptor UNC5a is able to induce neurite outgrowth and to differentially activate RhoA and Rac1 during neurite extension in a spatial and temporal manner. 相似文献
15.
Lei Yan Heng Luo Xiaolu Tang Haidong Wang 《Journal of biochemical and molecular toxicology》2023,37(2):e23260
Cannabinoids (CBs) are psychoactive compounds, with reported anticancer, anti-inflammatory, and anti-neoplastic properties. The study was aimed at assessing the hepatoprotective effects of CB against ethanol (EtOH)-induced liver toxicity in rats. The animals were divided into seven groups: control (Group I) and Group II were treated with 50% ethanol (EtOH 5 mg/kg). Groups III, IV, and VI were treated with (EtOH + CB 10 mg/kg), (EtOH + CB 20 mg/kg), and (EtOH + CB 30 mg/kg), respectively. Groups V and VII consisted of animals treated with 20 and 30 mg/kg, of CB, respectively. Biochemical analysis revealed that Group IV (EtOH + CB 20 mg/kg) had reduced levels of ALT—alanine transferase, AST—aspartate aminotransferase, ALP—alanine peroxidase, MDA—malondialdehyde and increased levels of GSH-reduced glutathione. Histopathological analysis of liver and kidney tissues showed that EtOH + CB (20 and 30 mg/kg) treated animal groups exhibited normal tissue architecture similar to that of the control group. ELISA revealed that the inflammatory markers were reduced in the animal groups that were treated with EtOH + CB 20 mg/kg, in comparison to the animals treated only with EtOH. The mRNA expression levels of COX-2, CD-14, and MIP-2 showed a remarkable decrease in EtOH + CB treated animal groups to control groups. Western blot analysis revealed that CB downregulated p38/JNK/ERK thereby exhibiting its hepatoprotective property by inhibiting mitogen-activated protein kinase pathways. Thus, our findings suggest that CB is a potential candidate for the treatment of alcohol-induced hepatotoxicity. 相似文献
16.
17.
Li Gu 《Biochemical and biophysical research communications》2009,383(4):469-474
Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Although the precise mechanism remains unclear, mounting evidence suggests that oxidative stress plays an important role in the pathogenesis of PD. DJ-1 gene is associated with oxidative stress and mutations in DJ-1 are involved in an autosomal recessive, early onset familial form of PD. The ERK1/2 signaling pathway contributes to neuroprotection during oxidative stress. However, the correlation between DJ-1 and the ERK1/2 signaling pathway remains unknown. To test for an association of DJ-1 with the ERK1/2 signaling pathway, we transfected wild-type and L166P mutated DJ-1 into COS-7 and MN9D cells. The results showed that over-expression of WT-DJ-1 dramatically enhanced the phosphorylation of ERK1/2 and its upstream kinase MEK1/2. Meanwhile, WT-DJ-1, but not L166P-DJ-1 inhibited the expression of protein phosphatase 2A (PP2A), an inhibitor of the ERK1/2 signaling pathway. Moreover, over-expression of WT-DJ-1 increased cell viability and decreased cell sensitivity to H2O2-induced neurotoxicity. Inhibition of the ERK1/2 signaling pathway with a MEK1/2 inhibitor reversed these changes. We conclude that DJ-1 does affect the ERK1/2 signaling pathway and change the susceptibility of cells to oxidative stress. 相似文献
18.
Effect of carbamate esters on neurite outgrowth in differentiating human SK-N-SH neuroblastoma cells 总被引:7,自引:0,他引:7
Carbamate esters are widely used as pesticides and can cause neurotoxicity in humans and animals; the exact mechanism is still unclear. In the present investigation, the effects of carbamates at sublethal concentration on neurite outgrowth and cytoskeleton as well as activities of acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in differentiating human SK-N-SH neuroblastoma cells were studied. The results showed that 50 microM of either aldicarb or carbaryl significantly decreased neurite length in the retinoic acid-induced differentiation of the neuroblastoma cells, compared to cells treated with vehicle. Western blot analyses revealed that neither carbamate had significant effects on the levels of actin, or total neurofilament high molecular proteins (NF-H). However, increased NF-H phosphorylation was observed following carbamate treatment. These changes may represent a useful in vitro marker of carbamate neurotoxicity within a simple model of neuronal cell differentiation. Furthermore, activity of AChE, but not NTE, was significantly inhibited by aldicarb and carbaryl in differentiating cells, which suggested that cytoskeletal protein changes induced by carbamate esters in differentiating cells was associated with inhibition of AChE but not NTE. 相似文献
19.
Jing Zong Da‐ping Zhang Heng Zhou Zhou‐yan Bian Wei Deng Jia Dai Yuan Yuan Hua‐wen Gan Hai‐peng Guo Qi‐zhu Tang 《Journal of cellular biochemistry》2013,114(5):1058-1065
Baicalein, a flavonoid present in the root of Scutellaria baicalensis, is well known for its antibacterial, antiviral, anti‐inflammatory, antithrombotic, and antioxidant effects. Here we show that baicalein also attenuates cardiac hypertrophy. Aortic banding (AB) was performed to induce cardiac hypertrophy secondary to pressure overload in mice. Mouse chow containing 0.05% baicalein (dose: 100 mg/kg/day baicalein) was begun 1 week prior to surgery and continued for 8 weeks after surgery. Our data demonstrated that baicalein prevented cardiac hypertrophy and fibrosis induced by AB, as assessed by echocardiographic and hemodynamic parameters and by pathological and molecular analysis. The inhibitory action of baicalein on cardiac hypertrophy was mediated by effects on mitogen‐activated protein kinase kinase (MEK)‐extracellular signal‐regulated kinases (ERK1/2) signaling and GATA‐4 activation. In vitro studies performed in rat cardiac H9c2 cells confirmed that baicalein attenuated cardiomyocyte hypertrophy induced by angiotensin II, which was associated with inhibiting MEK‐ERK1/2 signaling. In conclusion, our results suggest that baicalein has protective potential for targeting cardiac hypertrophy and fibrosis through suppression of MEK‐ERK1/2 signaling. Baicalein warrants further research as a potential antihypertrophic agent that might be clinically useful to treat cardiac hypertrophy and heart failure. J. Cell. Biochem. 114: 1058–1065, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
20.
探讨MEK/ERK1/2信号通路在Cyclosporin A(CsA)诱导滋养细胞表达titin中的作用。应用RT-PCR、Western blot检测CsA诱导的滋养细胞titin的表达水平,Western blot检测CsA作用于滋养细胞后ERK1/2的活化程度,并观察MEK特异性抑制剂U0126对其mRNA转录的影响。发现CsA以时间和剂量依赖方式诱导titin表达,并刺激滋养细胞ERK1/2的活化,U0126以剂量依赖方式抑制CsA诱导的titin表达。结果表明CsA通过活化MEK/ERK1/2信号通路诱导滋养细胞titin 的表达,改变其生物学行为,从而有利于胚胎着床及早期发育。 相似文献