首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, USA, to characterize variation of benthic diatom assemblages among and within rivers relative to environmental conditions. Analysis of similarity (ANOSIM) indicated that diatom assemblages were significantly different among all the seven rivers draining different ecoregions. Longitudinal patterns in diatom assemblages showed river-specific features. Bray–Curtis dissimilarity index values did not increase as a function of spatial distance among the sampled reaches within any river but the Malheur. Standardized Mantel r of association between assemblage similarity and spatial distance among sites ranged from a high of 0.69 (Malheur) to a low of 0.18 (Chehalis). In the Malheur River, % monoraphids, nitrogen-tolerant taxa, and beta-mesosaprobous taxa all decreased longitudinally while % motile taxa, especially Nitzschia, showed an opposite trend, reflecting a strong in-stream water quality gradient. Similar longitudinal trends in water quality were observed in other rivers but benthic diatom assemblages showed either weak response patterns or no patterns. Our study indicated that benthic diatom assemblages can clearly reflect among-river factors. The relationships between benthic diatom assemblages and water quality within each river may depend on the strength of the water quality gradients, interactive effects of water quality and habitat conditions, and diatom sampling design.  相似文献   

2.
Using Diatom Assemblages to Assess Urban Stream Conditions   总被引:4,自引:0,他引:4  
We characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions. Diatoms, water chemistry, and physical variables of riffles at 19 urban and 28 rural stream sites were sampled and assessed during the summer base flow period. Near stream land use was characterized using GIS. In addition, one urban and one rural site were sampled monthly throughout a year to assess temporal variation of diatom assemblages between the urban and rural stream sites. Canonical correspondence analysis (CCA) showed that the 1st ordination axis distinctly separated rural and urban sites. This axis was correlated with conductivity (r = 0.75) and % near-stream commercial/industrial land use (r = 0.55). TWINSPAN classified all sites into four groups based on diatom assemblages. These diatom-based site groups were significantly different in water chemistry (e.g., conductivity, dissolved nutrients), physical habitat (e.g., % stream substrate as fines), and near-stream land use. CCA on the temporal diatom data set showed that diatom assemblages had high seasonal variation along the 2nd axis in both urban and rural sites, however, rural and urban sites were well separated along the 1st ordination axis. Our results suggest that changes in diatom assemblages respond to urban impacts on stream conditions.  相似文献   

3.
The depth distribution of photosynthetic pigments and benthic marine diatoms was investigated in late spring at three different sites on the Swedish west coast. At each site, sediment cores were taken at six depths (7–35 m) by scuba divers. It was hypothesized that (1) living benthic diatoms constitute a substantial part of the benthic microflora even at depths where the light levels are <1% of the surface irradiance, and (2) the changing light environment along the depth gradient will be reflected in (a) the composition of diatom assemblages, and (b) different pigment ratios. Sediment microalgal communities were analysed using epifluorescence microscopy (to study live cells), light microscopy and scanning electron microscopy (diatom preparations), and HPLC (photosynthetic pigments). Pigments were calculated as concentrations (mg m–2) and as ratios relative to chlorophyll a. Hypothesis (1) was accepted. At 20 m, the irradiance was 0.2% of surface irradiance and at 7 m, 1%. Living (epifluorescent) benthic diatoms were found down to 20 m at all sites. The cell counts corroborated the diatom pigment concentrations, decreasing with depth from 7 to 25 m, levelling out between 25 and 35 m. There were significant positive correlations between chlorophyll a and living (epifluorescent) benthic diatoms and between the diatom pigment fucoxanthin and chlorophyll a. Hypothesis (2) was only partly accepted because it could not be shown that light was the main environmental factor. A principal component analysis on diatom species showed that pelagic forms characterized the deeper locations (25–35 m), and epipelic–epipsammic taxa the shallower sites (7–20 m). Redundancy analyses showed a significant relationship between diatom taxa and environmental factors – temperature, salinity, and light intensities explained 57% of diatom taxa variations.  相似文献   

4.
Periphytic diatoms are potentially powerful indicators of environmental change in climatically‐sensitive high latitude regions. However, only a few studies have examined their taxonomic and ecological characteristics. We identified and enumerated diatom assemblages from sediment, rock, and moss habitats in 34 ultra‐oligotrophic and highly transparent lakes and ponds on Victoria Island, Arctic Canada. The similar limnological characteristics of the sites allowed us to examine the influence of habitat, independent of water chemistry, on the diatom assemblages. As is typical in shallow arctic water bodies, benthic taxa, including species of Achnanthes, Caloneis, Cymbella, Navicula, and Nitzschia, were most widely represented. Minor gradients in our measured environmental variables did not significantly explain any variance in diatom species, but there were marked differences in diatom assemblages among sites. Pond ephemerality seems to explain some diatom variation, because aerophilic taxa such as Achnanthes kryophila Petersen and A. marginulata Grunow were dominant in shallow sites that had undergone appreciable reductions in volume. We identified several taxa that exhibited strong habitat preferences to sediment, moss, or rock substrates and also found significant differences (P < 0.01) in diatom composition among the three habitats. In comparisons with three similar diatom surveys extending over 1200 km of latitude, we determined that surface sediment assemblages differed significantly (P < 0.001) among all regions examined. Diatom species diversity was inversely related to latitude, a result likely explained by differences in the lengths of growing seasons. These data contribute important ecological information on diatom assemblages in arctic regions and will aid in the interpretation of environmental changes in biomonitoring and paleolimnological studies.  相似文献   

5.
Following the European Water Framework Directive, this study aims to be the first step to (i) identify diatom type assemblages in unpolluted streams in NW Italy, and (ii) find which ecological factors explain most of the variation. To achieve this, we collected physical, chemical and benthic community data from four streams in NW Italy from 2001 to 2004, for a total of 72 samples. All sampling sites were between 200 m a.s.l. and 800 m a.s.l., but differed in the dominant lithological substrate, i.e. alluvial or siliceous. Relationships between diatom communities and environmental factors were examined using canonical correspondence analysis (CCA), while Indicator Species Analysis was used to define characterizing species and accompanying species of three environmental groups identified by CCA: (1) high water quality and medium saline content, (2) high water quality and low saline content, (3) poor water quality. The diatom assemblages of the three groups of sites differed significantly, as shown by the Multi-Response Permutation Procedure. There were strong correlations between diatoms and environmental factors, especially chlorides (also highly correlated with sulphates and carbonate hardness), nitrate concentration and conductivity. The group 1 assemblage was typical of the alluvial Alpine streams with medium saline content and was characterized by mostly oligosaprobic/β-mesosaprobic taxa such as Cymbella affinis, Diatoma ehrenbergii and Staurosira pinnata. The species assemblage found in the siliceous Alpine rivers with good water quality make them suitable reference sites for a benthic diatom community. Electronic Supplementary Material Supplementary material is available for this article at and accessible for authorised users Handling editor: K. Martens  相似文献   

6.
The Oregon Coast Range, rich in natural resources, is under increasing pressure from rapid development. The purpose of this study was to examine diatom species patterns in relation to environmental variables in streams of this region. Diatoms, water quality, physical habitat and watershed characteristics were assessed for 33 randomly selected stream sites. Watershed size, elevation, geology, vegetation and stream morphology varied substantially among sites. Streams were characterized by dilute water chemistry and a low percent of fine substrate. A total of 80 diatom taxa were identified. Taxa richness was low throughout the region (median 15, range 10–26). Assemblages were dominated by two adnate species, Achnanthidium minutissimum and Achnanthes pyrenaicum. Diatoms sensitive to organic pollution dominated the assemblages at all sites (median 85%). Non-metric multidimensional scaling (NMDS) and correlational analysis showed quantitative relationships between diatom assemblages and environmental variables. NMDS axes were significantly correlated with watershed area, watershed geology, conductivity, total nitrogen, total solids and stream width. Diatom-based site classification (Two-way Indicators Species Analysis, (TWINSPAN)) yielded 4 discrete groups that displayed weak correlations with environmental variables. When stream sites were classified by dominant watershed geology, overall diatom assemblages between groups were significantly different (Analysis of Similarity (ANOSIM) global R = 0.19, p < 0.05). Our results suggest that streams in the coastal region are in relatively good condition. High natural variability in stream conditions in the Oregon Coast Range ecoregion may obscure quantitative relationships between environmental variables and diatom assemblages. A bioassessment protocol that classifies sites by major landscape variables and selects streams along the major human disturbance gradient might allow for detection of early signs of human disturbance in environmentally heterogeneous regions, such as the Pacific Northwest.  相似文献   

7.
Acid, brown water streams are common on the west coast of the South Island, New Zealand. Acid precipitation is not a significant problem in this region where stream water acidity is brought about by high concentrations of humic substances. The interrelationships between pH, alkalinity, conductivity, DOC and total reactive aluminium were investigated at 45 running water sites. pH (range 3.5–8.1) was strongly correlated with alkalinity (range 0–49 g·m−3 CaCO3) and less strongly with conductivity (range 2.0–9.7 mS·m−1). A strong positive correlation was found between DOC and total reactive aluminium concentration both of which were correlated negatively with pH. In all brown water streams, most aluminium was probably in the non-toxic, organically complexed form. Benthic invertebrate assemblages were examined at 34 sites. Taxonomic richness was not correlated with pH and similar numbers of ephemeropteran, plecopteran and trichopteran taxa were taken from acidobiontic (pH ⩽ 5.5), acidophilic (pH 5.6–6.9) and moderately alkaline (pH ⩾ 7.0) groups of streams. Many species occurred over a wide pH range and had a lower limit of about pH 4.5. The mayfly, Deleatidium occurred at 33 sites and was amongst the five most abundant taxa at 32 of them. The stoneflies, Zelandobius confusus, Austroperla cyrene and Stenoperla maclellani, an elmid, Hydora sp. and a caddisfly, Psilochorema sp. also occurred in over half the streams and frequently were abundant. Few habitat specialists were found. Benthic assemblages were not associated strongly with measured physicochemical factors but streams in close proximity tended to have similar faunas. This suggests that the availability of suitable colonizers sets the limits to species richness and is important in determining the composition of benthic assemblages at a particular locality.  相似文献   

8.
Effects of clay discharges on streams   总被引:11,自引:11,他引:0  
The impact of clay discharges on benthic invertebrates was investigated by comparison of communities upstream and downstream of alluvial gold mining on 6 streams on the West Coast of the South Island, New Zealand. Mean turbidity was increased by 7–154 NTU above background (mean 1.3–8.2 NTU) by the mine discharges during the 2 months before sampling. Patterns of increase in suspended solids (strongly correlated with turbidity, r=0.95) were similar. Invertebrates densities were significantly lower at all downstream sites, ranging from 9 to 45% (median 26%) of densities at matched upstream sites. Downstream densities as a proportion of those upstream were negatively correlated with the logarithm of the turbidity loading (r=–0.82, P<0.05). The densities of the common taxa were also generally lower downstream of mining. Taxonomic richness was significantly lower at downstream sites in the four streams receiving higher turbidity loads (mean turbidity increase = 23–154 NTU). Lower epilithon biomass and productivity, and degraded food quality at the downstream sites probably explain the lowered invertebrate densities. At some sites, reduced bed permeability and interstitial dissolved oxygen, and avoidance reactions of invertebrates (i.e., increased drift), may have also contributed to lower invertebrate densities.Formerly DSIR Marine and Freshwater.  相似文献   

9.
Despite frequent disturbances from flow, stream meiofauna form diverse and abundant assemblages suggesting that they are resistant and/or resilient to flow disturbances. Stream flow profoundly influences benthic invertebrate communities but these effects remain poorly understood. We examined the influence of flow on meiofauna colonization at small spatial scales (2–3 m) using artificial streams in conjunction with similar sites (flow, depth, substrates) in the reference stream (Illinois River, Arkansas). Colonization of meiofauna was found to be rapid and generally increased with flow rates examined (1–2, 6–7, and 11–12 cm s−1). Six of the 10 most abundant taxa successfully completed colonization in artificial channels (equaled or exceeded reference benthic densities) within 5 days. Benthic meiofauna were more abundant in fast flows in artificial channels and in fast and slow flows in reference stream sites. A diverse assemblage of meiofauna was collected from the plankton which was dominated by rotifers, copepods (mostly nauplii), dipterans, and cladocerans. Densities of drifting meiofauna (potential colonists of the benthos) were low (5 no. l−1) and similar among artificial channels and reference sites regardless of flow rates (F 1,18 = 2.19, p = 0.1407). Although densities were low, the numbers of drifting meiofauna were more than sufficient to colonize the benthos. Less than 0.65% of the drifting meiofauna were needed to colonize the substrates of artificial streams. The benthic assemblage paralleled that of the plankton, consisting mainly of rotifers, copepods (mainly nauplii), and dipterans. Evidence for active control over dispersal was observed as meiofauna densities varied between the plankton and benthos over the diel cycle (F 1,18 = 6.02, p = 0.0001 and F 1,18 = 9.88, p = 0.006, respectively). Rotifers, copepods, and nematodes were more abundant in the plankton during the day and in the substrates at night. These results suggest that meiofauna assemblages can change rapidly in response to alterations of habitat patches by disturbance.  相似文献   

10.
Walters  D. M.  Leigh  D. S.  Bearden  A. B. 《Hydrobiologia》2003,494(1-3):5-10
We tested the hypothesis that urbanization alters stream sediment regimes and homogenizes fish assemblages in 30 sub-basins of the Etowah River. Sediment variables included average particle size (mean phi) of the stream bed, percent fines (<2 mm) in riffles, and baseflow turbidity (NTU). Homogenization was quantified as ratios of endemic to cosmopolitan species richness (Er:Cr) and abundance (Ea:Ca). High NTU and fine stream beds were associated with homogenized assemblages (i.e., lower E:C ratios). Mean phi and NTU were significantly correlated with E:C ratios (r = –0.74 to –0.76) and, when combined using multiple regression, accounted for 73% of the variance in ratios. Stream slope strongly covaried with mean phi (r = –0.92) and percent fines in riffles (r = –0.79), but multiple regression models showed that urbanized sites had finer beds and riffles than predicted by slope alone. Urban land cover was the primary predictor of NTU (r 2 = 0.42) and, combined with slope in multiple regression, explained 51% of the variance in NTU. Our results indicate that stream slope is a background variable predicting particle size and E:C ratios in these streams. Urbanization disrupts these relationships by transforming clear streams with coarse beds into turbid streams with finer beds. These conditions favor cosmopolitan species, ultimately homogenizing fish assemblages. Bed texture was linked to urbanization; however, NTU was the best indicator of urban impacts because it was statistically independent from slope.  相似文献   

11.
1. Diatoms are recognised as indicators in temperate streams, but only recently have assessments begun of their value in indicating stream quality in the tropics and sub‐tropics. Here, we extend previous studies by assessing stream diatom assemblages in relation to water quality and habitat character in the Kathmandu Valley, and in the Middle Hills of Nepal and northern India. We also assessed whether the U.K. Trophic Diatom Index (TDI) was sufficiently portable to reveal pollution in Himalayan rivers. In the more urbanised and highly agricultural Kathmandu Valley, we compared diatom response to water quality classes indicated by a local invertebrate index, the Nepalese Biotic Score (NEPBIOS). 2. Thirty and 53 streams in the Kathmandu Valley (2000) and Middle Hills (1994–96), respectively, were sampled in October and November during stable flows following the monsoon. Diatoms were collected in riffles, water samples taken for chemical analysis, and habitat character of the stream channel, bank and catchment assessed using river habitat surveys. In the Kathmandu Valley, macroinvertebrates were collected by kick‐sampling. 3. In total, 113 diatom taxa were found in the Kathmandu Valley streams and 106 in the Middle Hills. Of 168 taxa recorded, 62 occurred only in the Kathmandu Valley, 56 only in the Middle Hills and 50 were common to both areas. Most taxa found only in the Kathmandu Valley belonged to the genus Navicula while most taxa confined to the Middle Hills were Achnanthes, Fragilaria and Gomphonema. 4. In the Kathmandu Valley, richness and diversity increased significantly with K, Cl, SO4 and NO3, but declined significantly with Al, Fe, surfactants and phenols. Richness here also varied with habitat structure, being lowest in fast flowing, shaded streams with coarse substrata in forested catchments. In all streams combined, richness increased significantly with Si, Na and PO4, but declined significantly with increasing pH, Ca and Mg. 5. Diatom assemblage composition in the Kathmandu Valley strongly reflected water chemistry as revealed by cations (K, Na, Mg, Ca), anions (Cl, SO4), nutrients (NO3, PO4, Si), and also substratum composition, flow character and catchment land use. The commonest taxa in base‐poor forested catchments were Achnanthes siamlinearis, A. subhudsonis, A. undata and an unidentified Gomphonema species; Cocconeis placentula and Navicula minima in agricultural catchments; and Mayamaea atomus var. alcimonica, M. atomus var. permitis, and Nitzschia palea at polluted sites near settlements. Diatom assemblages in none‐agricultural catchments of the Kathmandu Valley and Middle Hills were similar, but they contrasted strongly between urban or agricultural catchments of the Kathmandu Valley and the less intensively farmed catchments of the Middle Hills. 6. In keeping with variations in assemblage composition, most streams in the Kathmandu Valley had higher TDI values (33–87, median = 64) and more pollution tolerant taxa (0–78%, median = 16) than streams in the Middle Hills (25–82, median 45, 0–26%, median = 2). TDI values correlated significantly with measured PO4, Si, and Na concentrations in the Kathmandu Valley, and with Si and Na concentrations in the Middle Hills. There was some consistency between water quality classes revealed by NEPBIOS and diatoms, but also some contrast. Water quality class I–II sites had lower TDI values and were less species rich than water quality II sites, however, there were no significant differences in detrended correspondence analysis (DCA) assemblage scores and relative abundances of pollution tolerant taxa between NEPBIOS classes. 7. While diatoms in the Middle Hills indicate unpolluted or only mildly enriched conditions, they reveal pronounced eutrophication and organic pollution in the densely populated Kathmandu Valley. In addition, diatoms appear to respond to altered habitats in rural agricultural and urban areas. As demands on water resources in this region are likely to increase, we advocate the continued development of diatoms as indicators using methods based on what appear to be consistent responses in the TDI between Europe and the Himalaya.  相似文献   

12.
Community response to environmental gradients operating at hierarchical scales was assessed in studies of benthic diatoms, macroinvertebrates and fish from 44 stream sites in the New York City watershed. Hierarchical cluster analysis (TWINSPAN) of diatoms and fish partitioned the study sites into four groups, i.e., acid streams, reservoir outlets and wetland streams, large eutrophic streams, and small eutrophic streams; macroinvertebrate TWINSPAN distinguished an additional group of silty eutrophic streams. The correspondence among the three assemblage TWINSPAN groupings was moderate, ranging from 51 to 57%. The similarity across the four major group types was the highest among large eutrophic stream and acid stream assemblages, and the lowest among small eutrophic stream assemblages. Stepwise discriminant function analysis revealed that environmental factors discriminated most effectively the diatom grouping and least effectively the fish grouping. The best environmental predictors for diatom and macroinvertebrate grouping were conductance and percent surface water, while population density was most powerful in separating the fish groups. Carbaryl was the only pesticide that correlated with macroinvertebrate grouping. Partial redundancy analyses suggested a differential dependence of freshwater communities on the scale of the environmental factors to which they respond. The role of small‐scale habitat and habitatland cover/land use interaction steadily increased across the diatom, macroinvertebrate, and fish assemblages, whereas the effect of large‐scale land cover/land use declined.  相似文献   

13.
SUMMARY 1. Surprisingly few data compare the apparent responses of diatoms and macroinvertebrates to metals in streams. We examined variation in metals, diatoms and macroinvertebrates between 51 streams in metal‐mining areas of Wales and Cornwall, U.K., using a survey design with multiple reference and polluted sites. 2. To quantify variations in metals between sites, we calculated cumulative criterion unit (CCU) scores, a recently defined measure of total stream metal concentration and toxicity, to account for additive effects of each metal relative to putative toxic thresholds. We compared assemblage responses among epilithic diatoms and macroinvertebrates to CCU scores or individual metal concentrations using correlation and detrended correspondence analysis (DCA). 3. Macroinvertebrate diversity, richness and total abundance declined and evenness increased with increasing copper concentrations. Trends with CCU scores were significant but less pronounced. Some individual macroinvertebrate taxa varied significantly in abundance with CCU scores, copper or zinc, but overall assemblage composition correlated only with manganese, pH and nitrate. 4. Among diatoms, pH and conductivity explained the major variations in assemblage composition, and neither diversity, richness nor evenness varied with metal concentration. Nevertheless, the single strongest predictor of diatom assemblages on ordination axis 2 was the CCU score. The abundances of some macroinvertebrate taxa, particularly grazers, also explained significant variations in diatom assemblages that were linked to both metals and acid–base status. 5. Diatom species apparently tolerant of high metal concentrations included Psammothidium helveticum, Eunotia subarcuatoides, Pinnularia subcapitata and Sellaphora seminulum. Of these, P. helveticum, E. subarcuatoides and P. subcapitata were abundant at lower pH than S.seminulum and might indicate metal enrichment over different pH ranges. Sensitive species included Fragilaria capucina var. rumpens, Achnanthes oblongella and Tabellaria flocculosa. 6. We conclude that macroinvertebrates at these sites reflected metal pollution most strongly through variations in diversity while effects on diatoms were best reflected by changes in assemblage composition. We suggest that, with further refinement, CCU scores might be useful in evaluating the possible effects of metal pollution on benthic organisms in European rivers.  相似文献   

14.
It is unclear whether differentiating live and dead diatoms would enhance the accuracy and precision of diatom-based stream bioassessment. We collected benthic diatom samples from 25 stream sites in the Northern Oregon Coast ecoregion. We counted live diatoms (cells with visible chloroplasts) and then compared the counts with those generated using the conventional method (clean counts). Non-metric multidimensional scaling (NMDS) showed that the diatom assemblages generated from the two counts were overall similar. The relationships between the two diatom assemblages (summarized as NMDS ordination axes) and the environmental variables were also similar. Both assemblages correlated well with in-stream physical habitat conditions (e.g., channel dimensions, substrate types, and canopy cover). The conventional diatom method provides taxonomic confidence while the live diatom count offers ecological reliability. Both methods can be used in bioassessment based on specific assessment objectives. Handling editor: J. Saros  相似文献   

15.
The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida.  相似文献   

16.
Phytoplankton succession and sinking rates were studied from January to December 2003 at a coastal station in the Gulf of Trieste (northern Adriatic Sea), 200 m offshore, in a relatively undisturbed area. A conical sediment trap, moored at 15 m depth (water depth 17 m), was used. The hypothesis if the presence of benthic and epiphytic diatoms can lead to an overestimation of the vertical fluxes was tested. To evaluate primary and secondary sedimentation contributions, planktonic, benthic and epiphytic diatoms were distinguished. Benthic species abundance varied throughout the year and it was related to resuspension that strongly influenced sinking rates. All over the year, diatoms were the prevailing class in the trap material accounting for 75.32% of the settled cells, while flagellates represented 24.11%. Dinophyceae and resting cells constituted minor components, accounting for 0.43% and 0.14%, respectively. The gross sedimentation rates ranged from 0.006 × 108 cell m−2 d−1 in the second week of May to 6.30 × 108 cell m−2 d−1 in the third week of January with a mean annual value of 1.09 ± 1.43 × 108 cell m−2 d−1. To the primary sedimentation rate Pseudo-nitzschia seriata of the group “Nitzschia seriata complex” contributed for 49.77% followed by Chaetoceros spp. (23.88%). The major contributor to the secondary sedimentation rate was the diatom Paralia sulcata, accounting for 24.76%. Epiphytic diatoms contributed for 11.19% and 12.27% on annual average gross abundance and biomass, respectively, reaching even 72.04% of gross abundance and 56.06% of gross biomass in the second week of August. The correlation between temperature and the logarithm of the epiphytic biomass was statistically significant, with r = 0.66 and P < 0.001. Both in the cluster analysis and in the PCA four main groups were formed, where benthic and epiphytic species were separately gathered. Planktonic, benthic and epiphytic forms accounted for 50.78%, 36.95% and 12.27%, respectively, calculated on the annual average biomass. Therefore, vertical fluxes can be overestimated of 50% or more if benthic and epiphytic species are not rejected.  相似文献   

17.
18.
The composition (% relative abundance) of diatom assemblages from soft bottom sediments was studied at 75 sites situated in 46 rivers, brooks, and ditches in the islands of Hiiumaa and Saaremaa and in the lowland of West Estonia. Although the total number of recorded taxa was 205, the studied diatom assemblages consisted of 54, 55, 48, and 50 constant species in the drainage basin of Moonsund, the Gulf of Riga, Hiiumaa, and Saaremaa, respectively. The habitats of the dominating taxa were heterogenous and the most widespread species were Achnanthidium minutissimum, Martyana martyi, Meridion circulare, Cocconeis placentula, Planothidium lanceolatum, and Amphora pediculus. The Shannon–Weaver diversity (H) index varied from 2.09 to 4.63. Multivariate analyses were used to identify the environmental variables governing the composition and structure of the benthic diatom assemblage. Principal Component Analysis (PCA) and Redundancy Analysis (RDA), based on 56 most abundant taxa, indicated differences in the composition and structure of diatom assemblages between different drainage basins as well as between the upper and lower stream courses. In the headwaters there prevailed small epipsammic diatoms (Martyana, Planothidium, Staurosira, Staurosirella). Different motile epipelic species from the genera Amphora, Navicula, Nitzschia, etc. were distributed abundantly in the lower courses of the streams. There was a positive correlation between order of the stream site and trophic level of water (R=0.35; p<0.05). Along a river system, the increasing order of the stream was accompanied by higher trophic level of water.  相似文献   

19.
Gut contents of larval, juvenile, and adult specimens of the Hawaiian gobiid fish Sicyopterus stimpsoni were examined to catalog the algal flora ingested by this species. The developmental stages of S. stimpsoni examined represented hallmark points in the fish’s life cycle corresponding with major migratory and metamorphic transitions. The algal flora was dominated by diatom species and shifted from taxa representative of a marine, planktonic community in larval fish to a freshwater, benthic community in juvenile and adult fish. This change in diet corresponds with the migration of larval fish to freshwater streams just prior to juvenile development in which rapid modification in mouth anatomy makes ingestion of planktonic algal species difficult. Benthic diatoms from juvenile and adult fish assemblages represented multiple genera that live in a narrow set of environmental conditions. These algae grow during a specific period in the development of the benthic algal community in Hawaiian streams. This suggests a highly specialized dietary behavior that depends heavily on continually restarting the benthic algal successional pattern, which appears to be regulated by the hydrological cycles of streams on the island.  相似文献   

20.
The effects of urban pollution from Hanoi city on the benthic diatom communities of the Nhue–Tolich river system were studied during the 2003 dry season. Benthic diatoms were allowed to grow on glass slides suspended in the water flow for 4 weeks. To reveal the relationship between water quality and diatom communities, Canonical correspondence analysis (CCA) was used on data concerning relative abundances of diatom species and environmental variables. Two diatom indices, IPS and DAIpo, were applied to evaluate water quality in the three rivers. A total of 291 diatom taxa were found in the Red, Nhue and Tolich Rivers. These were mainly cosmopolitan taxa, with some tropical, subtropical and endemic taxa. The most abundant taxa at the Red site were Aulacoseira granulata, Achnanthidium minutissimum, Encyonema minutum, Navicula recens and other halophilous taxa such as Nitzschia kurzii, Seminavis strigosa, Entomoneis paludosa, Bacillaria paradoxa. Diatom assemblages at the Tolich site consisted mainly of Nitzschia umbonata, Nitzschia palea and Eolimna minima. Diatom density ranged from 660 to 30,000 cells/cm2. Environmental variables and diatom assemblage composition at all sites were significantly correlated. Two diatom indices gave similar results and indicate the Tolich River with the lowest values as a highly polluted site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号