首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lv SY  Yang YJ  Qin YJ  Xiong W  Chen Q 《Peptides》2011,32(5):978-982
Apelin, as the endogenous ligand for the APJ, regulates many biological functions, including blood pressure, neuroendocrine, drinking behavior, food intake and colonic motility. The present study was designed to investigate the effect of central apelin-13 on gastric emptying and gastrointestinal transit in mice. Intracerebroventricular (i.c.v.) injection of apelin-13 (3 and 10 μg/mouse) decreased gastric emptying rate by 10.9% and 17.1%. This effect was significantly antagonized by the APJ receptor antagonist apelin-13(F13A) and the opioid receptor antagonist naloxone, respectively. However, intraperitoneal (i.p.) injection of apelin-13 (10-100 μg/mouse) did not affect gastric emptying. Apelin-13 (0.3, 1 and 3 μg/mouse, i.c.v.) inhibited gastrointestinal transit by 16.8%, 23.4% and 19.2%. Apelin-13(F13A) and naloxone could also reverse this antitransit effect induced by apelin-13. Taken together, these results suggest that i.c.v. injected apelin-13 inhibits gastric emptying and gastrointestinal transit and it seems that APJ receptor and opioid receptor might be involved in these processes.  相似文献   

2.
Su SF  Yang AM  Yang SB  Wang NB  Lu SS  Wang HH  Chen Q 《Peptides》2012,35(1):31-35
Neuronostatin is a 13-amino acid amidated peptide widely distributed in various organs including gastrointestinal tract. However, the effect of neuronostatin on gastrointestinal motility has not been well characterized. In the present work, effects of central administration of neuronostatin on gastric emptying and gastrointestinal transit were investigated. The results indicated that intracerebroventricular (i.c.v.) administration of neuronostatin (1, 5, 10 or 20nmol/mouse) delayed gastric emptying and gastrointestinal transit in a dose-related manner in mice. The effects were significantly reversed by melanocortin 3/4 receptor antagonist SHU9119 or classical opioid receptor antagonist naloxone, suggesting that the central melanocortin system and opioid system may be involved in the gastrointestinal effects elicited by i.c.v. administration of neuronostatin. In addition, we found that C-terminal amidation modification of neuronostatin is essential to exert its gastrointestinal effects. These results indicated that neuronostatin may play an important role in regulating gastrointestinal function.  相似文献   

3.
L L Murphy  B A Adrian  M Kohli 《Steroids》1999,64(9):664-671
Acute treatment with delta9-tetrahydrocannabinol [delta9-THC; 0.5 or 1.0 mg/kg b.w. intravenously (i.v.)], the major psychoactive constituent of marijuana, produces a dose-related suppression of pulsatile luteinizing hormone (LH) secretion in ovariectomized rats. To determine whether delta9-THC produces this response by altering neurotransmitter and/or neuropeptide systems involved in the regulation of LH secretion, ovariectomized rats were pretreated with antagonists for dopamine, norepinephrine, serotonin, or opioid receptors, and the effect of delta9-THC on LH release was determined. Pretreatment with the D2 receptor antagonists butaclamol (1.0 mg/kg b.w., intraperitoneally) or pimozide [0.63 mg/kg, subcutaneously (s.c.)], the opioid receptor antagonists naloxone (1-4 mg/kg, i.v.) or naltrexone (2 mg/kg, i.v.), the noradrenergic alpha2-receptor antagonist idazoxan (10 microg/kg, i.v.), or the serotonin 5-HT(1C/2) receptor antagonist ritanserin (1 or 5 mg/kg b.w., i.p.), did not alter delta9-THC-induced inhibition of pulsatile LH secretion. Pretreatment with a relatively high dose of the beta-adrenergic receptor blocker propranolol (6 mg/kg, i.v.) attenuated the ability of the low THC dose to inhibit LH release; however, lower doses of propranolol were without effect. Furthermore, the ability of a relatively nonspecific serotonin 5-HT(1A/1B) receptor antagonist pindolol (4 mg/kg, s.c.) or the specific 5-HT1A receptor antagonist WAY-100635 (1 mg/kg, s.c.) to significantly attenuate THC-induced LH suppression indicates that activation of serotonergic 5-HT1A receptors may be an important mode by which THC causes inhibition of LH release in the ovariectomized rat.  相似文献   

4.
Centrally administered bombesin (0.1-3.5 micrograms, i.c.v.) inhibits gastrointestinal transit of a charcoal meal in a dose-related manner in rats. The roles of pituitary and adrenal glands in the mediation of this effect were assessed. The inhibition of gastrointestinal transit associated with bombesin (0.5 microgram, i.c.v.) was prevented by either hypophysectomy or adrenalectomy. Bombesin-induced inhibition of gastrointestinal transit is therefore mediated through the pituitary-adrenal axis. This is in contrast to bombesin-induced scratching and inhibition of gastric acid secretion which are not markedly influenced by either hypophysectomy or adrenalectomy.  相似文献   

5.
The effects of subcutaneous (s.c.), intrathecal (i.t.) and intracerebroventricular (i.c.v.) injection of fentanyl and D-Ala2,D-Leu5-enkephalin (DADLE) on intestinal myoelectrical activity were examined in fed rats. In rats with chronically implanted electrodes on the small and large bowel, i.c.v. fentanyl and DADLE restored the 'fasted' pattern of duodenal activity, i.e. the migrating myoelectric complex (MMC) for 8-12 h at a dose as small as 1 nM/kg. In addition, the colonic pattern of activity evaluated as the number of migrating spike bursts (MSB) per min was nearly halved for 1 h following i.c.v. fentanyl (10 nM/kg). Pretreatment with naloxone, but not methylnaloxone prevented these effects on the small and large bowel. Fentanyl (100 nM/kg s.c.) significantly reduced small and large bowel motility, but DADLE (100 nM/kg s.c.) which induced a transient 'fasted pattern' on the duodenum strongly stimulated colonic motor activity. Pretreatment with methylnaloxone prevented the inhibitory effects of s.c. fentanyl but not the colonic excitatory effects of DADLE. The i.t. administration of fentanyl and DADLE did not modify the activity pattern of the bowel. Again, i.t. DADLE stimulated the colon, even after methylnaloxone treatment and at doses 100 times less than the smallest active s.c. dose. The long-lasting changes in small bowel motility and the important delay following DADLE and fentanyl i.c.v., reinforces the hypothesis of a central opioid control of the gastrointestinal motor pattern with possible involvement of released substances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Administration of bombesin into the lateral cerebral ventricle (i.c.v.) of rats results in a dose-related delay in gastric emptying and small intestinal transit. Recordings of intestinal intraluminal pressure in this species show that the i.c.v. peptide produces a dose-related increase in the frequency of duodenal contractions, and a complex inhibitory/excitatory jejunal effect at low and high doses, respectively. Intrathecal (i.th.) or i.c., but not intraperitoneal (i.p.), bombesin produces a dose-related slowing of gastrointestinal and colonic transit in mice. I.c.v. bombesin is 13.5 and 3406 times more potent in inhibition of gastrointestinal transit than when given by the i.th. or i.p. routes, respectively. Similarly, the i.c.v. peptide is 1.54 and over 11000 times more potent in slowing mouse colonic transit than when given by the i.th. or i.p. routes, respectively. The substance P analogue, D-Arg1, D-Pro2, D-Trp7,9, Leu11-Substance P (DAPTL-SP)(a reported bombesin antagonist in vitro) was not effective in blocking the gastrointestinal transit effects of the peptide in vivo. Transection of the spinal cord at the level of the second thoracic vertebra (T2) eliminates the gastrointestinal and colonic effects of i.th., but not i.c.v. bombesin. Thus, bombesin can affect motor function of the gut via activity within the brain or spinal cord of rats and mice; the activity of the peptide when given at the supraspinal level depends on an intact vagus nerve and adrenal-pituitary axis, while the activity of the peptide given at the spinal level appears to depend on the integrity of ascending spinal-supraspinal pathways.  相似文献   

7.
《Life sciences》1994,56(4):PL83-PL87
Spinally administered μ opioid agonists produce potent antinociception and inhibition of gastrointesdtinal transit. Blockade of 5-hydroxytryptamine (5-HT) or norepinephrine (NE) uptake potentiates intrathecal (i.t.) DAMGO antinociception. To determine whether 5-HT and NE uptake blockade will also potentiate the gastrointestinal inhibition, mice were treated with zimelidine, desipramine or saline, followed by i.t. DAMGO and tested for tail-flick antinociception or inhibition of gastrointestinal transit. DAMGO produceed antinociception dose-dependently (ED50 = 4.6 ng). Zimelidine (10 mg/kg, s.c., 1 hr before DAMGO) produced a 6.2-fold ng). Desipramine produced a 5.3-fold shift (ED50 = 1.4 ng). DAMGO also produced a dose-dependent inhibition of gastrointestinal transit (ED50 = 117 ng). However, zimelidine or desipramine treatment did not affect DAMGO inhibition of gastrointestinal transit (ED50 = 80 ng.).  相似文献   

8.
It is generally thought that the mu receptor actions of metabolites, 6-monoacetylmorphine (6MAM) and morphine, account for the pharmacological actions of heroin. However, upon intracerebroventricular (i.c.v.) administration in Swiss Webster mice, heroin and 6MAM act on delta receptors while morphine acts on mu receptors. Swiss Webster mice made tolerant to subcutaneous (s.c.) morphine by morphine pellet were not cross-tolerant to s.c. heroin (at 20 min in the tail flick test). Now, opioids were given in combination, s.c. (6.5 h) and i.c.v. (3 h) preceding testing the challenging agonist i.c.v. (at 10 min in the tail flick test). The combination (s.c. + i.c.v.) morphine pretreatment induced tolerance to the mu action of morphine but no cross-tolerance to the delta action of heroin, 6MAM and DPDPE and explained why morphine pelleting did not produce cross-tolerance to s.c. heroin above. Heroin plus heroin produced tolerance to delta agonists but not to mu agonists. Surprisingly, all combinations of morphine with the delta agonists produced tolerance to morphine which now acted through delta receptors (inhibited by i.c.v. naltrindole), an unusual change in receptor selectivity for morphine.  相似文献   

9.
The effects of the delta agonists SNC80 and deltorphin II on ambulation and rearing activity were measured in habituated and non-habituated rats. SNC80 (30, 100, 200, 400 nmol, i.c.v.) and deltorphin II (3, 15, 30, 60 nmol, i.c.v.) induced similar, dose-dependent biphasic locomotor effects in non-habituated subjects. An initial decrease in exploratory activity was associated with anxiogenic signs such as pilo-erection, freezing behaviour and pupil dilation for each drug. Pre-treatment with the delta antagonist naltrindole (10 nmol, i.c.v.) inhibited the depressant effect, but not the subsequent stimulant effect, on locomotor activity in response to 30 nmol deltorphin II in this assay (P<0.05). In habituated rats, deltorphin II (0.03, 0.1, 0.3, 3 nmol, i.c.v.) caused significant, naltrindole-reversible increases in locomotor activity (P<0.05 for all doses) at 1,000-fold lower doses than those required for a similar response to SNC80 (10, 30, 100, 300 nmol, i.c.v.). Pharmacokinetic studies suggest that these compounds penetrate the brain to similar extents following i.c.v. injection. The substantial potency difference between deltorphin II and SNC80 in stimulating locomotor activity in habituated rats suggests pharmacological heterogeneity for these delta opioid receptor agonists.  相似文献   

10.
Studies in these laboratories have shown that morphine and thyrotropin releasing hormone (TRH) inhibit gastrointestinal transit in the mouse. Administration of morphine sulfate (5 mg/kg, s.c.) or TRH (10 microgram i.c.v.) to mice inhibited gastrointestinal transit as measured by the charcoal meal test. In order to determine whether the effects of TRH and morphine were mediated via stereospecific opiate receptors, the effects of two stereoisomers of an antagonist, (-) alpha -5,9-diethyl-2'-hydroxy-2-(3-furylmethyl)6,7-benzomorphan (MR2266), the active isomer and (+) alpha-5,9-diethyl-2'-hydroxy-2-(3-furylmethyl)6,7-benzomorphan (MR 2267), the inactive isomer, on morphine and TRH induced changes in gastrointestinal transit were determined. Morphine and THR induced inhibition of gastrointestinal transit was antagonized by MR 2266 (1 and 3 mg/kg, s.c.) but was unaffected by MR 2267. These studies provide evidence for the involvement of opiate receptors in the actions of morphine and TRH on gastrointestinal transit, and further suggest that the receptors are stereospecific in nature.  相似文献   

11.
The mu agonist morphine and the non-specific opioid antagonist naloxone both may accelerate feline colonic transit; the effects of morphine are dose dependent. Kappa and delta receptor function was studied in the present work. Colonic transit of a radionuclide marker instilled into the cecum was quantitated for 6 hr in a crossover study. The delta agonist [D-Pen2,D-pen5]enkephalin (1 mg/kg, i.m.) prolonged the cecum and ascending colon half-emptying time by 337% (P less than 0.05), and delayed the progression of the geometric center over time. The kappa agonist U-50,488 (1 mg/kg, i.m.) had no apparent effect on the cecum and ascending colon, but delayed filling of the descending colon. Loperamide, an antidiarrheal agent, also delayed colonic transit. Thus, selective opioid agonists have both site and functional differences in their effect on feline colonic transit.  相似文献   

12.
The mu agonist, morphine, and the prototype kappa agonists, ketocyclazocine and ethylketocyclazocine (EK), were studied for their effects on gastrointestinal transit. Following s.c. administration, both morphine (0.3-3 mg/kg) and ketocyclazocine (0.3-10 mg/kg) antagonized transit of an opaque marker through the small intestines of mice. Morphine (0.1-1 microgram) was also effective after intracerebroventricular (icv) administration in mice whereas ketocyclazocine (0.3-30 micrograms) was not. Similarly, while both morphine (0.3-5 mg/kg) and EK (0.6-10 mg/kg) slowed transit after s.c. injection to rats, only morphine (1-10 micrograms), but not EK (0.3-300 micrograms), was active following icv administration. Icv infusion of the mu benzomorphan, phenazocine (10-100 micrograms), slowed transit in a dose-related manner. These results indicate that there may be an anatomically distinct distribution of receptors for benzomorphan kappa agonists in both the mouse and rat, with these opiate receptors not being located near the lateral cerebral ventricles. The difference in efficacy between morphine and ketazocines in slowing gastrointestinal transit after icv administration to rodents suggests that (a) inactivity in this endpoint is a characteristic of benzomorphan kappa compounds and (b) the model may serve as a useful screen when establishing in vivo profiles of kappa agonists in mice and rats.  相似文献   

13.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation.Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded.  相似文献   

14.
H H Suh  L F Tseng 《Life sciences》1990,46(11):759-765
Antinociceptive tolerance and cross-tolerance to intracerebroventricular (i.c.v.) beta-endorphin, morphine, and DPDPE (D-Pen2-D-Pen5-enkephalin) induced by a prior i.c.v. administration of beta-endorphin, morphine and DPDPE, respectively, were studied in mice. Acute tolerance was induced by i.c.v. pretreatment with beta-endorphin (0.58 nmol), morphine (6 nmol) and DPDPE (31 nmol) for 120, 180 and 75 min, respectively. Various doses of beta-endorphin, morphine or DPDPE were then injected. The tail-flick and hot-plate tests were used as antinociceptive tests. Pretreatment of mice with beta-endorphin i.c.v. reduced inhibition of the tail-flick and hot-plate responses to i.c.v. administered beta-endorphin, but not morphine and DPDPE. Pretreatment of mice with morphine i.c.v. reduced inhibition of the tail-flick and hot-plate responses to morphine but not beta-endorphin. Pretreatment of mice with DPDPE reduced inhibition of the tail-flick and hot-plate responses to DPDPE but not beta-endorphin. The results indicate that one injection of beta-endorphin, morphine or DPDPE induces acute antinociceptive tolerance to its own distinctive opioid receptor and does not induce cross-tolerance to other opioid agonists with different opioid receptor specificities. The data support the hypothesis that beta-endorphin, morphine and DPDPE produce antinociception by stimulating specific epsilon, mu- and delta-opioid receptors, respectively.  相似文献   

15.
A Dray  L Nunan  W Wire 《Life sciences》1985,36(14):1353-1358
beta-Funaltrexamine (beta-FNA) was tested in the spinal cord and supraspinally against inhibition of reflex bladder contractions produced in the anesthetized rat by the opioid-receptor selective agonists [D-Ala2, MePhe4, Gly (ol)5]enkephalin (DAGO, mu-agonist) and [D-Pen2, D-Pen5] enkephalin (DPDPE, delta-agonist). All agents were microinjected either intracerebroventricularly (i.c.v.) or intrathecally (i.t.). beta-FNA (1-8 micrograms) produced long-lasting antagonism of both DAGO and DPDPE. Complete recovery from its effects was only observed some 24-32 h later. Higher doses of beta-FNA (4 and 8 micrograms i.t.) produced short-lived agonistic activity though the selectivity of this was not determined. It was concluded that beta-FNA was a potent, long-lasting antagonist at central opioid receptors in vivo but was unselective for the mu and delta opioid receptor.  相似文献   

16.
1. We have previously demonstrated the existence of a dual neuromodulatory regulation of prolactin secretion by the opioid system. In the present work, we evaluated the opioid receptor subtypes involved in both the stimulatory and the inhibitory regulation of prolactin secretion in pregnant rats. 2. Specific opioid agonists and antagonists were administered intracerebro ventricular (i.c.v.) to rats on day 3 and on day 19 pregnancy in rats of pretreated with mifepristone. Blood samples were obtained after decapitation at 12.00 and 18.00 h. Serum prolactin levels were measured by RIA. 3. The mu-selective agonist DAMGO and beta-endorphin caused a significant increase in serum prolactin secretion on day 3 of pregnancy, during the diurnal surge and intersurge period. Pretreatment with naloxone prevented the increase on prolactin levels induced by DAMGO. The administration of U-50,488, a kappa-selective agonist or DPDPE, a delta-selective agonist, did not modify serum prolactin concentration while the mu1-antagonist naloxonazine reduced significantly serum prolactin levels. On day 19 of pregnancy, the release of prolactin induced by mifepristone was significantly increase by naloxonazine, while the kappa-antagonist nor-binaltorfimine induced only a small but significant increase. No effect was observed after administration of the delta-antagonist naltrindole. 4. We conclude that the mu-opioid receptor seems to be more specifically involved in both the stimulatory and inhibitory regulation by the opioid system on prolactin secretion during pregnancy. The increase on serum prolactin levels on day 3 after administration of DAMGO and beta-endorphin may suggest the participation of other regulatory mechanisms as the dopaminergic and serotoninergic systems. On day 19, only the endogenous ligands delta did not participate in the regulation of prolactin secretion, while the participation of the kappa-opioid receptor was significantly less effective than the endogenous ligand mu. Our results provide evidences of an important role of the opioid system through specific receptors on the regulation of prolactin secretion during early and late pregnancy.  相似文献   

17.
Ghrelin has been identified as the endogenous ligand for the GHS-R1α (growth hormone secretagogue receptor 1 alpha). Our previous experiments have indicated that ghrelin (i.c.v.) induces antinociceptive effects in acute pain in mice, and the effects were mediated through the central opioid receptors and GHS-R1α. However, which opioid receptor (OR) mediates the antinociceptive effects and the molecular mechanisms are also needed to be further explored. In the present study, the antinociceptive effects of ghrelin (i.c.v.) could be fully antagonized by δ-opioid receptor antagonist NTI. Furthermore, the mRNA and protein levels of δ-opioid peptide PENK and δ-opioid receptor OPRD were increased after i.c.v injection of ghrelin. Thus, it showed that the antinociception of ghrelin was correlated with the GHS-R1α and δ-opioid receptors. To explore which receptor was firstly activated by ghrelin, GHS-R1α antagonist [D-Lys3]-GHRP-6 was co-injection (i.c.v.) with deltorphin II (selective δ-opioid receptor agonist). Finally, the antinociception induced by deltorphin II wasn’t blocked by the co-injection (i.c.v.) of [D-Lys3]-GHRP-6, indicating that the GHS-R1α isn’t on the backward position of δ-opioid receptor. The results suggested that i.c.v. injection of ghrelin initially activated the GHS-R1α, which in turn increased the release of endogenous PENK to activation of OPRD to produce antinociception.  相似文献   

18.
We previously reported the stimulatory effect of endogenous nitric oxide (NO) on gastric acid secretion in the isolated mouse whole stomach and histamine release from gastric histamine-containing cells. In the present study, we investigated the effects of endogenous and exogenous NO on gastric acid secretion in urethane-anesthetized rats. Acid secretion was studied in gastric-cannulated rats stimulated with several secretagogues under urethane anesthesia. The acid secretory response to the muscarinic receptor agonist bethanechol (2 mg/kg, s.c.), the cholecystokinin(2) receptor agonist pentagastrin (20 microg/kg, s.c.) or the centrally acting secretagogue 2-deoxy-D-glucose (200 mg/kg, i.v.) was dose-dependently inhibited by the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA, 10 or 50 mg/kg, i.v.). This inhibitory effect of L-NNA was reversed by a substrate of NO synthase, L-arginine (200 mg/kg, i.v.), but not by D-arginine. The histamine H(2) receptor antagonist famotidine (1 mg/kg, i.v.) completely inhibited the acid secretory response to bethanechol, pentagastrin or 2-deoxy-D-glucose, showing that all of these secretagogues induced gastric acid secretion mainly through histamine release from gastric enterochromaffin-like cells (ECL cells). On the other hand, histamine (10 mg/kg, s.c.)-induced gastric acid secretion was not inhibited by pretreatment with L-NNA. The NO donor sodium nitroprusside (0.3-3 mg/kg, i.v.) also dose-dependently induced an increase in acid secretion. The sodium nitroprusside-induced gastric acid secretion was significantly inhibited by famotidine or by the soluble guanylate cyclase inhibitor methylene blue (50 mg/kg, i.v.). These results suggest that NO is involved in the gastric acid secretion mediated by histamine release from gastric ECL cells.  相似文献   

19.
Rothman RB  Vu N  Xu H  Baumann MH  Lu YF 《Peptides》2002,23(12):2177-2180
Previous work from this laboratory demonstrated that intracerebroventricular (i.c.v.) administration of IgG antibodies directed against selected neuropeptides changed the density of opioid receptors, suggesting that neuropeptides in the CNS can perform a regulatory role. To further test this hypothesis, we administered anticorticotropin (CRF) IgG to rats via the i.c.v. route and measured the density of opioid mu and delta receptors and also beta- and alpha2-adrenergic receptors. The results demonstrated that anti-CRF IgG upregulates mu and beta-adrenergic receptors. We conclude that CRF in the cerebrospinal fluid may exert regulatory effects throughout the brain.  相似文献   

20.
Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300 microg/kg, i.p.) did not influence cumulative food intake for the 2h post-injection in rats or mice nor gastric emptying in rats. In rats, obestatin (300 microg/kg) did not modify CCK (1 microg/kg, i.p.)-induced significant decrease in food intake (36.6%) and gastric emptying (31.0%). Furthermore, while rats injected with CCK (0.3 microg/kg, i.v.) displayed gastric relaxation, no change in gastric intraluminal pressure was elicited by obestatin (300 microg/kg, i.v.) pre- or post-CCK administration. In in vitro rat gastric vagal afferent preparations, 20 units that had non-significant changes in basal activity after obestatin at 30 microg responded to CCK at 10 ng by a 182% increase. These data show that obestatin neither influences cumulative food intake, gastric motility or vagal afferent activity nor CCK-induced satiety signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号