首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Open-water, marginal-ice and in-ice zones were sampled in the Weddell Sea during November and December, 1993 in an effort to examine the influence of the early spring bloom on the diet and population structure of the three biomass dominant copepods: Metridia gerlachei, Calanus propinquus, and Calanoides acutus. The abundance of all three species in the upper 200 m was highest at stations in the open water, but individually, each species displayed a unique trend. M. gerlachei, which showed the least variability, was significantly more abundant in open water than in the marginal-ice zone. The abundance of Calanus propinquus was higher in open water than in the marginal-ice zone or in the ice. Calanoides acutus displayed the highest variability, with significant differences between all three ice-cover zones. Diet analysis revealed no significant differences in the number of food items within each ice-cover zone and diatoms were the most numerous item identified in the guts of all three species. However, M. gerlachei and Calanus propinquus also contained metazoan material, while Calanoides acutus did not. There were dramatic differences in the age composition of the species between the zones. Early copepodite stages of all three species predominated at the ice edge and in open water. Numbers of M. gerlachei adult females were roughly equivalent in all three zones while Calanoides acutus and Calanus propinquus adult females composed a higher fraction of the total population within the ice. These results compare well with life-history data compiled by other authors and reinforce the importance of the ice edge to bloom-dependent Antarctic zooplankton. Accepted: 5 April 1999  相似文献   

2.
Summary The food of 163 juvenile specimens of 13 species of notothenioid fishes collected in the southern Weddell Sea (Antarctica) was analyzed. Investigated fish size range was 3–13 cm SL. Principal food items were calanoid copepods Metridia gerlachei, Calanoides acutus, and Calanus propinquus; all developmental stages of Euphausia crystallorophias, and post-larval nototheniid fish Pleuragramma antarcticum. Diet of juvenile channichthyids is limited to few species of euphausiids and fish in the size > 10 mm, but does not include significant numbers of copepods. Pelagic stages of nototheniids feed on copepods and/or larval euphausiids smaller than 10 mm. At similar size, nototheniids and bathydraconids take smaller prey items than channichthyids.  相似文献   

3.
The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widely different ice coverage and chlorophyll biomass: pack ice (pre-bloom), ice edge (bloom) and open water (post-bloom). Summer metabolic rates were compared with published winter rates. Field work was done in the Weddell Sea in the region of 60 °S, 36°W in late November and December 1993. Oxygen consumption rates were determined by placing individuals in syringe respirometers and monitoring the oxygen partial pressure for 10–20 hours. Higher metabolic rates were observed in the primarily herbivorous copepods, Calanoides acutus, Rhincalanus gigas and Calanus propinquus in regions of higher primary production: ice edge and open water. The carnivorous Paraeuchaeta antarctica showed a similar pattern. The omnivorous copepods Metridia gerlachei and Gaetanus tenuispinus showed no changes in metabolism between zones. Data on routine rates of copepods from the winter were available for C. propinquus and P. antarctica. In P. antarctica, rates were higher in the summer. Calanus propinquus showed a higher metabolic rate in the summer than in the winter, but the difference was not significant at the 0.05 level. It was concluded that copepods near the ice zone in the ice zone in the Antarctic rely on the spring ice-edge bloom for growth and completion of their life cycle.  相似文献   

4.
The Zooplankton community of Croker Passage,Antarctic Peninsula   总被引:5,自引:2,他引:3  
Summary Zooplankton species composition, abundance and vertical distribution were investigated in the upper 1000 m of Croker Passage, Antarctic Peninsula during the austral fall (March–April, 1983). 106 species were identified, many being mesopelagic and reported previously from the Southern Ocean. The most numerous species (>1000/100 m3) were the copepodsMetridia gerlachei, Microcalanus pygmaeus, Oncaea antarctica andOncaea curvata. Oncaea curvata alone constituted half the zooplakton population. Zooplankton biomass was dominated by three copepod species,Metridia gerlachei, Calanoides aculus andEuchaeta antarctica,which comprised 74% of the biomass. Size analysis revealed most of the zooplankton numbers were in the >1 mm fraction. The biomass distribution was polymodal with major maxima in the >1 mm and the 4–4.9 mm size classe. The >1 mm peak, exclusive of protozoans, was primarily copepod nauplii and copepodites ofOncaea, Metridia andMicrocalanus. The 4–4.9 mm peak was mostlyCalanoides acutus andMetridia gerlachei.All of the principal species had broad vertical distributions both day and night. There was some suggestion of diel vertial migration byMetridia gerlachei andEuchaeta antarctica, with segments of their populations migrating into the upper 100 m and 200 m, respectively, at night. Most of the dominant and subdominant species were concentrated below 200 m,with only the subdominantOithona similis having its maximum in the epipelagic zone. The occurrence of zooplankton at winter depths appears to have been earlier in Croker Passage in 1983 than has been generally reported for waters south of the Polar Front.Total standing stock of net-caught zooplankton (>15 mm) in the upper 1000 m was estimated at 3.1 gDW/m2, which is somewhat higher than values reported for the West Wind Drift and for open ocean areas of temperate to tropical latitudes.Euphausia superba (17–52 mm) dominated the pelagic biomass, exceeding zooplankton standing stock under a square meter of ocean by a factor of 15. This is in contrast to lower latitudes where zooplankton biomass is usually greater than macrozooplankton-micronekton.  相似文献   

5.
Summary The effect on adequate sample size and sample volume of the abundances of three predominant copepod species, Metridia gerlachei, Calanus propinquus and Calanoides acutus, were studied in Bransfield Strait (Antarctic Peninsula) in the austral summer of 1988–1989 and waters north of the Weddell Sea in 1989–1990. Copepod abundances were higher in the area north of the Weddell Sea, with the exception of Metridia gerlachei, which was evenly distributed over both areas. Local (intra-station) patchiness was not found, indicating random distribution over small areas. In the assessment of inter-station variability in Bransfield Strait, with standard error of the mean set arbitrarily at 20% of the average abundance and a sampling volume of 150 m3, the theoretical minimum sample size (number of sampling stations) ranged from 6 to 17 for juvenile copepods and from 11 to 25 for adults. The minimum number of stations in the area north of the Weddell Sea reached from 5 to 7, and from 7 to 10 respectively.  相似文献   

6.
Gut contents and feeding activity of five dominant Antarctic copepods (Calanus propinquus, Calanoides acutus, Rhincalanus gigas, Metridia gerlachei and Microcalanus pygmaeus) were studied from samples collected during several cruises of the RV Polarstern to the eastern Weddell Sea. In summer, feeding activity, estimated as percentage of copepods with food in the guts, was high in all the species, and diatoms dominated all gut contents. In winter, C. acutus was trophically inactive, and C. propinquus and R. gigas considerably decreased their feeding activity, while a decrease in feeding of M. gerlachei and M. pygmaeus was less pronounced. Unidentified mass dominated gut contents in winter, supplemented by phytoplankton and protozoans. Prior to the spring bloom, feeding activity of C. acutus was low, with unidentified food predominating, while carnivory was important in actively feeding C. propinquus. Rhincalanus gigas tended to be more carnivorous than C. acutus, however with less feeding activity than C. propinquus. Seasonal changes in feeding patterns are discussed.  相似文献   

7.
Inter-annual variations in zooplankton community structure in Prydz Bay were investigated using multivariate analysis based on samples collected with a 330-μm mesh, 0.5-m2 Norpac net during the austral summer from 1999 to 2006. Two distinct communities, an oceanic and a neritic community, were consistently identified in all surveys. Oceanic communities had higher diversity and were indicated by species such as Haloptilus ocellatus, Heterorhabdus austrinus, Thysanoessa macrura, Rhincalanus gigas, Scolecithricella minor and Oikopleura sp.. Neritic communities were indicated by Euphausia crystallorophias and Stephos longipes and were characterized by fewer but more abundant species. In 1999 and 2006, a transitional community was also distinguished near the continental shelf edge, where ice coverage was more extensive than either the oceanic or neritic regions. Significant inter-annual variations in community structure (mainly involving species abundance rather than species composition) were found in both oceanic and neritic communities, being more obvious in the latter. The timing and amplitude of sea ice retreat (polynya appearance), and its effect on food availability, had strong influences on zooplankton community structure. In oceanic communities during years with earlier ice retreat, the extra time available for phytoplankton blooms to accumulate resulted in a higher proportion of large copepods (Calanoides acutus, Calanus propinquus, Metridia gerlachei) (especially the younger copepodites) in the zooplankton assemblage. In neritic communities, zooplankton such as the ice krill E. crystallorophias, and large copepods (C. acutus, C. propinquus, M. gerlachei), also showed higher abundance and earlier developmental stages in years with larger polynya. On the other hand, in years with later ice retreat, smaller polynya, and less time for phytoplankton blooms to form, the abundance of large copepods was lower and older age classes were more common.  相似文献   

8.
Grazing of dominant zooplankton copepods (Calanoides acutus, and Metridia gerlachei), salps (Salpa thompsoni) and microzooplankton was determined during the austral summer of 1998/1999 at the seasonal ice zone of the Prydz Bay region. The objective was to measure the ingestion rates of zooplankton at the seasonal ice zone, so as to evaluate the importance of different groups of zooplankton in their grazing impact on phytoplankton standing stock and primary production. Grazing by copepods was low, and accounted for <1% of phytoplankton standing stocks and 3.8-12.5% of primary production for both species during this study; even the ingestion rates of individuals were at a high level compared with previous reports. S. thompsoni exhibited a relatively high grazing impact on primary production (72%) in the north of our investigation area. The highest grazing impact on phytoplankton was exerted by microzooplankton during this investigation, and accounted for 10-65% of the standing stock of phytoplankton and 34-100% of potential daily primary production. We concluded that microzooplankton was the dominant phytoplankton consumer in this study area. Salps also played an important role in control of phytoplankton where swarming occurred. The grazing of copepods had a relatively small effect on phytoplankton biomass development.  相似文献   

9.
We compared six biochemical measures of nutritional condition: citrate synthase activity (CS), malate and lactate dehydrogenase activity (MDH and LDH), RNA:DNA ratio, and percent body protein and lipid. Adult females of five species of calanoid copepod (Calanoides acutus, Calanus propinquus, Metridia gerlachei, Rhincalanus gigas and Paraeuchaeta antarctica) were collected in the marginal ice zone of the northwestern Weddell Sea at the time of the annual phytoplankton bloom that occurs in association with the receding ice edge during austral spring. Three zones within the marginal ice zone were sampled: heavy-ice-cover pre-bloom, ice-edge bloom and low-ice-cover post-bloom. Lipid generally increased greatly from ice-covered to open water zones, and its importance in the life of polar copepods cannot be overstated. Increases in protein from ice-covered to open water were also observed, but were of less significance. Each species exhibited significant changes in at least one enzyme activity level. Citrate synthase activity in C. acutus, C. propinquus and R. gigas, all herbivores, increased between pre- and post-bloom stations. C. propinquus and M. gerlachei, which feed during winter, had large increases in LDH activity between pre- and post-bloom stations. Rhincalanus gigas and P. antarctica, the two largest species studied, showed variations in MDH activity, with peak enzyme activity occurring in post-bloom stations. RNA:DNA ratio did not change in any species. The effects of size, shipboard handling and freezer storage were easily corrected statistically, and did not alter any conclusions. The patterns observed in copepod nutrition at the Antarctic ice edge were consistent with existing models of life history for each species. The observations reported here, in conjunction with previously reported data, suggested that measurement of metabolic enzyme activity, especially in concert with lipid, enables estimation of nutritional condition in adult copepods. Additional studies comparing metabolic activity and ecology of common species should yield more information on the ecology of rarer species.  相似文献   

10.
Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.  相似文献   

11.
During the Winter Weddell Gyre Study in September–October 1989, the horizontal and vertical distribution, stage composition and feeding condition of the three antarctic copepod species Calanoides acutus, Rhincalanus gigas and Calanus propinquus were studied. The data indicate that C. acutus and R. gigas have the bases of their distributional ranges (sensu Makarov et al. 1982) in the Antarctic Circumpolar Current (ACC) and in the Warm Deep Water (WDW) entering the Weddell Gyre (WG). C. propinquus lived mainly in the cold WG south of the ACC. C. acutus overwintered mainly in the WG as stage IV copepodites (C). The species mainly inhabited the layers below the Tmax stratum and down to 2000 m, but C V and females occurred slightly higher than C III and IV. Males prevailed over females and were confined to a rather narrow layer between 500 and 1000 m. Feeding experiments suggested all deep-living stages to be resting. However, if this species spawns in late autumn the younger C I–II can stay in the Winter Water (WW). R. gigas inhabited mainly the Tmax stratum. In the eastern part of the WG, R. gigas breed in the WDW in autumn and hibernate as C I–III and C V–VI in the first and second winter, respectively. In the ACC zone, however, its life cycle is different and winter breeding of overwintered adults occurs. Most of the C. propinquus population overwintered in the WG as C III–V, inhabiting the WW. In the upper water layers in the interior of the WG, C III dominated with upto 18,000 individuals 1,000 m3. Shallow living C. propinquus were in the active, feeding state. Persistence of active feeding zooplankton populations in the WW of the WG can be an important factor influencing processes of phytoplankton development and the particle flux.  相似文献   

12.
The main emphasis of this study was to analyse the short-term development of abundance, population structure and vertical distribution of the dominant calanoid copepods during a phytoplankton bloom in the coastal area of the eastern Weddell Sea in December 2003. Microcalanus pygmaeus was by far the most abundant calanoid species. Metridia gerlachei, Ctenocalanus citer, Calanoides acutus, Calanus propinquus and the ice-associated Stephos longipes were also present in considerable proportions. The observed changes in the population characteristics and parameters of these species are described in detail and discussed in the context of the spring phytoplankton bloom. A conspicuous event occurring during the final stage of the study was the development of a strong storm. While the results suggest that this storm did not have any considerable influence on the populations of all other investigated copepod species, it very likely caused pronounced changes in the S. longipes population present in the water column. Before the storm, S. longipes was found primarily in the upper 100 m of the water column, and its population was dominated by adults (mean proportion = 41%) and the copepodite stage I (mean proportion = 30%). After the storm, the abundance increased considerably, and the copepodite stage I contributed by far the largest proportion (53%) of the total population indicating that the early copepodite stages probably had been released from the sea ice into the under ice water layer due to ice break-up and ice melt processes caused by the storm.  相似文献   

13.
Summary The present paper describes composition and abundance of meso- and macrozooplankton in the epipelagic zone of the Weddell Sea and gives a systematic review of encountered species regarding results of earlier expeditions. Material was sampled from 6 February to 10 March 1983 from RV Polarstern with a RMT 1+8 m (320 and 4500 m mesh size). In agreement with topography and water mass distribution three distinct communities were defined, clearly separated by cluster analysis: The Southern Shelf Community has lowest abundances (approx. 9000 ind./1000 m3). Euphausia crystallorophias and Metridia gerlachei are predominating. Compared with the low overall abundance the number of regularly occurring species is high (55) due to many neritic forms. Herbivores and omnivores are dominating (58% and 35%). The North-eastern Shelf Community has highest abundances (about 31 000 ind./1000 m3). It is predominated by copepodites I–III of Calanus propinquus and Calanoides acutus (61%). The faunal composition is characterized by both oceanic and neritic species (64). Fine-filter feeders are prevailing (65%). The Oceanic Community has a mean abundance of approximately 23 000 ind./1000 m3, consisting of 61 species. Dominances are not as pronounced as in the shelf communities. Apart from abundant species like Calanus propinquus, Calanoides acutus, Metridia gerlachei, Oithona spp. and Oncaea spp. many typical inhabitants of the Eastwind Drift are encountered. All feeding types have about the same importance in the Oceanic Community.  相似文献   

14.
Different approaches to the study of life cycle strategies of Antarctic copepods are described in an attempt to shed new light on our present knowledge. To date, most studies were carried out on abundance, horizontal and vertical distribution and stage composition during different seasons and in various regions. Hence, the seasonal pictures had to be compiled from different years and sampling regions. The physiological method includes measurements on e.g. egg production, feeding, respiration and excretion rates, C:N and O:N ratios, lipid and protein contents. However, both physiological and biochemical data are still rare. Results of field observations are given in this paper for investigations conducted within the last 15 years in the eastern Weddell Sea, while data of physiological parameters are based on a broader geographical region. In the eastern Weddell Sea, eight copepod species account for about 95% of copepod abundance and for more than 80% of copepod biomass. Within the calanoids, the small species Microcalanus pygmaeus dominates by numbers with 66%, while the large species Calanoides acutus and Calanus propinquus comprise together 52% of the biomass. Species abundance is lowest in winter and highest in summer/autumn, however, seasonal changes in the abundance of M. pygmaeus are small and this species occurs in similar quantities throughout the year. All copepod species show a distinct seasonal vertical distribution pattern and they occur in upper water layers in summer, in contrast to the other seasons. However, the depth layers of maximum concentration differ between species. The ontogenetic vertical migration is most pronounced in C. acutus and relatively weak in C. propinquus. The age structure also shows seasonal differences with the youngest population observed in summer for C. acutus, C. propinquus, Ctenocalanus citer or autumn for Metridia gerlachei, whereas the M. pygmaeus population is oldest during summer. The youngest copepodite stage and the males are not always present in C. acutus and C. propinquus. In contrast, all developmental stages and both sexes occur throughout the year in M. gerlachei, M. pygmaeus and C. citer. Gonad maturation in the dominant calanoid species proceeds well before the onset of phytoplankton production in the eastern Weddell Sea. However, the highest portion of females with ripe gonads and hence highest egg production rates coincide with the productive period in spring and summer. In autumn, ovaries of the three larger species C. acutus, C. propinquus and M. gerlacheiare all spent. In contrast, the percentage of ripe females of the two smaller species, C. citer and M. pygmaeus, stays high in autumn. Egg production rates are highly variable within one region and species. Many copepods accumulate large depots of lipid, mainly wax esters. In contrast, five species (C. propinquus, C. simillimus, Euchirella rostromagna, Stephos longipes and Paralabidocera antarctica) almost exclusively synthesise triacylglycerols and not wax esters. The lipid content exhibits distinct seasonal patterns, and is highest in autumn. A seasonal difference is also obvious in metabolic activities with lowest rates during the dark season. The adaptation to the pronounced seasonality in the Southern Ocean differs greatly between copepod species, and most Antarctic copepods stay active during the dark season. Calanoides acutus seems to be the only true diapause species. Calculations of summer developmental rates and winter mortality rates of the large species C. acutus and C. propinquus suggest that both species have a 1-year life cycle with few females overwintering and probably spawning a second time. In contrast, a 2-year life cycle is more likely in R. gigas. However, life cycle durations of all species studied are still uncertain and regional differences are very probable.  相似文献   

15.
The salinity tolerance of two dominant Antarctic planktic copepods (Calanus propinquus and Metridia gerlachei) was tested over a range from 34 to 85 PSU and compared with that of sympagic turbellarians. The copepods survived only at a salinity of 34, higher salinities causing death within days. The turbellarians survived at salinities up to 75. The data imply that C. propinquus and M. gerlachei will not survive incorporation into newly forming sea ice because of the increasing brine salinity in new ice. Received: 27 January 1998 / Accepted: 11 April 1998  相似文献   

16.
Zooplankton was collected during the drift on the USA-Russia Ice Station Weddell 1 in the western Weddell Sea. Stratified tows up to 1,000 m depths were performed under perennial ice at a distance of ca. 300 km from the marginal ice zone from March to May 1992. Seasonal abundance, developmental stage composition and vertical distribution in populations of large dominant calanoid copepod species were studied. The abundance of Calanoides acutus changed inconspicuously and averaged 1,260 ind. m-2; its developmental stage composition was characterised by the dominance of copepodites V (CV) and hardly changed in the course of observations. Calanus propinquus was at most stations in fairly low abundance and was represented by CV and adults; at the latest stations, it was not found. Rhincalanus gigas was also scarce; III-IV stages were present, but the first of them only at the southernmost stations. In contrast to this species, in the relatively abundant population of Metridia gerlachei (1,370 ind. m-2 on average), a new generation was observed. There was a clear deepening of the median depth of occurrence of the above three species from March to early May, while in late May a shifting to upper layers was observed which remained unexplained. The data obtained were compared to the data collected in the ice-open eastern part of the Weddell Sea in the corresponding season. It can be seen that the differences in populations dynamics of the four species under the perennial ice depends on their trophic mode, i.e. capability to store lipid reserves in summer and/or to feed in winter, and with food spectra.  相似文献   

17.
The individual respiration rates of five biomass-dominant copepods (Calanoides acutus, Rhincalanus gigas, Metridia gerlachei, Calanus propinquus and Paraeuchaeta antarctica), and Euphausia crystallorophias furcilia, from the Amundsen Sea, West Antarctica, were determined using a Clark-type oxygen microsensor affording high temporal resolution. Measurements were conducted on specimens collected from waters exhibiting a very narrow temperature range (?1.68 to ?1.32 °C), at sites located between 71 and 75°S, during the summer (31 January–20 March 2012). A short incubation time (3 h) was sufficient to reveal significant declines in dissolved oxygen concentrations by 12–45%. The respiration rates of the copepods and E. crystallorophias furcilia were within the ranges of previously reported values. The respiration rates of relatively large-bodied species were rather low, whereas the smaller species generally exhibited higher respiration rates. The data show that this simple microsensor technique is a useful high-resolution non-invasive means of investigating the metabolism of zooplankton in the Southern Ocean. The method could be used in other situations when such information is required.  相似文献   

18.
Summary Pelagic copepod populations under the pack ice of the Antarctic Weddell Sea were sampled with a 50 m net between October 2 and December 7, 1986, to study their abundance and developmental stage composition before and at the onset of the vernal phytoplankton bloom. Subadult stages and adult females were incubated to estimate rates of development and egg production. Copepod densities in the upper 200 m were highest for the small-sized species Oithona similis, Oncaea curvata and Ctenocalanus citer. About 95% of the copedite stages belonged to these species, dominated by Oithona. The copepodids were outnumbered by the nauplii in all species, except in Oncaea. The stage distribution in the small-sized species was bimodal with peaks in N3 and C4. The larger species Calanus propinquus and Metridia gerlachei showed peaks in nauplii only. Eggs were relatively abundant in all small and large species. Animals smaller than 1 mm not only were more abundant than the larger ones, but also had a higher total potential respiration. Eggs were produced by incubated females in sea water virtually without food at 0°C. Eggs hatched, and Oithona nauplii developed at a rate of about 7 days per stage. Copepodite stages did not develop significantly. Reproduction in the most abundant species commonly occurred before the algal spring increase when food levels were very low. Maintenance of a stable stage distribution at the expense of a high juvenile mortality seemed to be characteristic for the overwintering strategy of Antarctic copepods.  相似文献   

19.
The abundances of four dominant Antarctic copepod species, Metridia gerlachei, Rhincalanus gigas, Calanoides acutus and Calanus propinquus, were examined in the Southern Ocean in a combination of a literature review, analysis of museum samples and field sampling. The data were analysed for spatial and temporal variations. The data included in the analysis were from the Weddell Sea area in the summertime at periods 1929–1939 and 1989–1993. The results are discussed in the light of environmental changes and their hypothesised and observed consequences in the Southern Ocean: global temperature change, ozone deficiency and cascading trophic interactions. Combining all these hypothetical effects our null hypothesis was that there were no consistent long-term changes in the abundance of dominant pelagic Copepoda. The null hypothesis was rejected, since several taxons did show statistically significant long-term changes in abundance. The changes were not uniform however. The numbers of adults and juveniles of Calanus propinquus increased significantly between the periods studied. Adult stages of Calanoides acutus were the only taxon decreasing in abundance, in concert with the cascading trophic interactions theory. Latitudinally, only Metridia gerlachei showed a significant increase from north to south. Longitudinally, the abundances of Calanus propinquus juveniles and both adults and juveniles of Rhincalanus gigas increased from west to east. There were no significant variations between day and night samples. Interannual changes were statistically significant in juvenile stages of all the species and in adults of Calanus propinquus. We conclude that no uniform and consistent abundance changes could be observed in the pelagic Copepoda of the Weddell Sea that could be connected to major environmental changes, expected to affect the whole planktonic ecosystem of the Southern Ocean. Significant changes in some of the species studied show that the pelagic ecosystem is not in a steady state, but in addition to interannual changes, there are also major fluctuations extending over decades. Received: 5 December 1996 / Accepted: 24 March 1997  相似文献   

20.
Summary The Antarctic copepod species Rhincalanus gigas, Calanoides acutus and Calanus propinquus were studied in the area of the Antarctic Peninsula in May 1986. Research was focussed on vertical distribution and stage composition of the populations. Rhincalanus gigas occurred in greatest densities in the upper layers of the water column, and copepodite stages CI and CII and nauplii dominated the population. Gut content analyses suggest that R. gigas was actively feeding. Copepodite stage CV dominated the Calanoides acutus population. At two deep basin stations (water depth>1000 m) the C. acutus population occurred below 500 m, whereas at shallower stations the majority was found above 300 m. Most specimens had empty guts. Calanus propinquus occurred in low densities, mainly in the upper water layers, and copepodite stage CV dominated. Most individuals of stage V had food in their guts. Our results suggest that C. acutus had ceased feeding and was overwintering in a resting stage (diapause), while C. propinquus and R. gigas were still active, the latter species having finished a late autumn spawning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号