首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic evidence are presented for the existence of a high affinity inhibitory site for ADP /Ki < 10?7 M/ in the oligomycin-sensitive ATPase of beef heart submitochondrial particles. The ATPase·ADP complex is completely inactive in the ATPase reaction; it can be converted into active ATPase in a slow ATP-dependent reaction. The dependence of a first order rate constant for activation of the enzyme·ADP complex on concentration of ATP gives a Km value equal to that for ATP in the ATPase reaction. The data obtained suggest that the membrane-bound ATPase complex contains two kinetically distinct nucleotide-binding centers, i.e. center 1 binds ATP or ADP with a formation of enzyme-substrate or enzyme-competitive inhibitor complexes: center 2 binds ADP with a formation of a complex which is able to bind ATP in center 1 and unable to hydrolyze the bound ATP. The binding of ATP or ADP in center 1 changes the reactivity of center 2 towards ADP.  相似文献   

2.
The soluble mitochondrial ATPase, F1, can be slowly inactivated by incubation with Mg+2 in a manner consistent with the observations of Moyle and Mitchell (FEBSLett.56, 55 (1975)). This inhibition results in a low initial rate of ATP hydrolysis upon addition to an ATPase assay medium of F1 which has been incubated with Mg+2. This inhibition, however, is completely reversible by Mg·ATP in a time dependent process and results in the rate of ATP hydrolysis increasing during the ATPase assay to reach control levels after 30 sec. The length of the lag is independent of the F1 concentration in the ATPase assay and the lag is also completely reversed by subsequent incubation with excess EDTA before assay.F1 is unstable if incubated with EDTA in the absence of free nucleotides or Mg+2. The rate of inactivation increases with decreasing protein concentration until a limiting rate is reached at high dilution. Mg+2 in excess of the EDTA or 50 μM ADP stabilize the F1 against the inactivation but cannot reverse prior denaturation.  相似文献   

3.
Pre-steady-state kinetics of beef heart mitochondrial ATPase   总被引:1,自引:0,他引:1  
The pre-steady-state kinetics of beef heart mitochondrial ATPase (F1) were examined. F1 was found to exhibit hysteretic behavior when hydrolyzing ATP. The hysteretic property was expressed as an activation process which occurred when the enzyme was mixed with its substrate, MgATP. Many catalytic turnovers were required before the activation was complete. The lag in hydrolysis increased hyperbolically as the concentration of enzyme increased. Passage of F1 through Sephadex G25 eliminated the activation process. Several kinetically distinct possibilities for explaining these data, including multiple nucleotide dissociations, enzyme conformational changes, and regulatory site interactions, are discussed. The enzyme was apparently able to recognize nucleotide in a noncatalytic manner, as evidenced by the fact that F1 preincubated with ADP in the absence of substrate achieved partial activation (smaller lag times) before being introduced to substrate. ADP is also a time-dependent inhibitor, exhibiting a slow hysteretic inhibition in addition to immediate competitive inhibition.  相似文献   

4.
The sarcolemmal membrane obtained from rat heart by hypotonic shock-LiBr treatment method was found to incorporate 32P from [γ-32P] ATP in the absence and presence of cyclic AMP and protein kinase. The phosphorylated membrane showed an increase in Ca2+ ATPase and Mg2+ ATPase activities without any changes in Na+K+ ATPase activity. The observed increase in Ca2+Mg2+ ATPase activity was found to be associated with an increase in Vmax value of the reaction whereas Ka value for Ca2+Mg2+ was not altered. These results provide information concerning biochemical mechanism for increased calcium entry due to hormones which are known to elevate cyclic AMP levels in myocardium and produce a positive inotropic effect.  相似文献   

5.
Soluble ATPase (F1) has been purified from pig heart mitochondria. The purified enzyme had a high specific activity and was homogeneous as checked by ultracentrifugation and electrofocusing. It could be dissociated into subunits by cold-treatment or sodium dodecyl sulfate denaturation. The molecular weights of the two major and three minor subunits could be estimated by sodium dodecyl sulfate gel electrophoresis. The native enzyme had an isoelectric point of 5.2 while the cold-denatured enzyme showed three main bands focusing at pH 5.0, 5.2, and 5.4. Kinetic properties (Vm and Km (atp) have been compared for the soluble and membrane bound ATPase in presence of various anions. Inhibitory effects of Quercetin and other flavonoids have been tested in order to get an insight on the interaction between ATPase and its natural inhibitor.  相似文献   

6.
The binding isotherms of Ca2+ and Sr2+ to human blood coagulation Factor IX have been obtained at 25 °C and pH 7.4. In the case of both cations, a Scatchard plot of the data reveals that a single class of binding sites exist. For Ca2+, a total of 16.0 ± 1.0 sites, of KD 7.3 ± 0.2 × 10?4m, are present on human Factor IX. Similar analysis of the Sr2+ data indicates that Factor IX contains 11.0 ± 1.0 binding sites, with a KD of 1.9 ± 0.1 × 10?3m. Both Sr2+ and Mn2+ effectively displace Ca2+ from human Factor IX; whereas Mg2+ is considerably less potent in this regard. Conversely, Ca2+ is capable of nearly complete displacement of Sr2+ from its binding sites on human Factor IX. The activation of human Factor IX, by human Factor XIa, shows a complex dependence on the Ca2+ concentration. Sr2+ can substitute for Ca2+ in this activation process. Mn2+ cannot, in itself, substitute for Ca2+ in activation of Factor IX, but does significantly enhance the activation of Factor IX by Factor XIa at suboptimal levels of Ca2+. The rate of activation of human Factor IX by the coagulant protein of Russell's viper venom also shows a dependence on the presence of divalent cations. Here, however, a rigid specificity is not noted, since Ca2+, Sr2+, and Mn2+ all allow activation to proceed equally well.  相似文献   

7.
A versatile hydroxylapatite batch assay for 1α,25-dihydroxyvitamin D3-receptor complex from chick intestinal mucosa has been developed. The assay has been characterized with respect to time and temperature of incubations, protein concentration, amount of hydroxylapatite required to bind receptor-steroid complexes, pH, and effects of KCl and phosphate. Triton X-100 (0,5%, vv) was found to be essential for the removal of nonspecifically bound ligand. The hydroxylapatite was shown to bind the 1α,25-dihydroxy-vitamin D3 receptor as demonstrated by the specificity and high affinity for 1α,25-dihydroxy-vitamin D3 and the sedimentation properties of the phosphate-extracted hydroxylapatite-bound complex on sucrose density gradients. Binding appears to be nearly quantitative. The efficient separation of bound from free ligand utilizing this assay makes it possible to examine a number of aspects of the binding of this steroid hormone to its cytoplasmic receptor that has not previously been possible.  相似文献   

8.
The metabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] in the rat has been studied under both in vivo and in vitro conditions. A time course study of the appearance of 1α,25-dihydroxyvitamin D3-26,23-lactone in the plasma following intravenous or oral administration of 1α,25(OH)2D3 suggests that the small intestine may take part in production of the 1α,25(OH)2D3-26,23-lactone. In an in vitro study using a homogenate of rat small intestinal mucosa, 1α,25(OH)2D3 undergoes further metabolism to give more polar metabolite(s) which comigrate with authentic 1α,24,25-trihydroxyvitamin D3 [1α,24,25(OH)3D3] on Sephadex LH-20 column chromatography. The metabolic profile obtained after high-pressure liquid chromatography reveals two major classes of metabolites, designated Peaks X and Y. Peak X is an unidentified metabolite of 1α,25(OH)2D3. Peak Y is chromatographically identical with 1α,25-dihydroxyvitamin D3-26,23-lactone which has been recently isolated from the plasma of rats and dogs as a major metabolite produced in vivo from either 1α,25(OH)2D3 or 1α-hydroxyvitamin D3 (N. Ohnuma, K. Bannai, H. Yamaguchi, Y. Hashimoto, and A. W. Norman, 1980, Arch. Biochem. Biophys.204, 387). The enzyme activity which produces metabolites X and Y in the rat intestinal homogenates is induced in vitamin D-replete rats by pretreatment of the animals with intravenous 1.25 μg/kg doses of 1α,25-dihydroxyvitamin D3, 6 to 8 h previously.  相似文献   

9.
The utilization of Fe2+-bathophenanthroline sulfonate for the detection and quantitation of protein bands in cylindrical polyacrylamide gels is described. Two procedures are outlined. The first procedure is used in standard disc electrophoresis and involves fixing the protein with trichloroacetic acid, staining with Fe2+-bathophenanthroline sulfonate, and destaining with an ethanol:acetic acid solution. The second protocol reported is utilized with sodium dodecyl sulfate-containing gels. After electrophoresis, the gels are incubated with a methanol: acetic acid solution to remove the sodium dodecyl sulfate. The gels are then stained with Fe2+-bathophenanthroline sulfonate and destained with a methanol: acetic acid solution. Excellent background clarity is observed with both methods. Densitometric areas of the stained protein bands are linear to 60 μg of bovine serum albumin, and the limit of detection of this protein is 1 μg. Because of its rapidity of staining and destaining, good sensitivity, and reproducibility of stain intensity, Fe2+-bathophenanthroline sulfonate is an excellent protein stain.  相似文献   

10.
The activity of phosphodiesterase (“Ca2+ plus Mg2+-dependent” phosphodiesterase) of a preparation from brain was found to depend on the presence of both Ca2+ and a protein factor called modulator. It was shown by gel filtration that the active enzyme-modulator complex (MW, about 200,000) was formed from the modulator (MW, 28,000) and an inactive enzyme (MW, about 150,000) in the presence of Ca2+. When EGTA was added, this active enzyme-modulator complex dissociated into inactive enzyme and modulator. These results, together with the finding of Teo and Wang that Ca2+ binds to the modulator, could explain the stimulatory effect of Ca2+ on this enzyme as follows: The “Ca2+ plus Mg2+-dependent” phosphodiesterase may exist as the inactive free form in equilibrium with the active enzymemodulator (Ca2+) complex, and Ca2+, through binding to the modulator, may shift the equilibrium towards formation of the active enzyme-modulator (Ca2+) complex, thereby increasing the activity of the mixture. On decreasing the concentration of Ca2+, the process is reversible.  相似文献   

11.
12.
The biological activity of 1α-hydroxyvitamin D2 has been determined in vitamin D-deficient rats. In the calcification of the rachitic epiphyseal plate, 1α-hydroxyvitamin D2 is more active than 25-hydroxyvitamin D3, while it is equally active in stimulating intestinal calcium absorption. On the other hand, it is much less active (one-third to one-fifth) than 25-hydroxyvitamin D3 in the mobilization of calcium from bone. In both the intestinal and bone responses, 1α-hydroxyvitamin D2 (312 pmol) is active in nephrectomized rats while 25-hydroxyvitamin D3 is not.  相似文献   

13.
In agreement with other workers, exposure of isolated rat fat cells to insulin shows a dose dependent increase in cyclic AMP phosphodiesterase (PDE) activity. However, when fat cells are pre-exposed to either guinea pig antiserum against insulin, rabbit antiserum against glutathione-insulin transhydrogenase (GIT), or immunogamma globulin against GIT, each antibody preparation totally or almost totally abolished the insulin-dependent increase in PDE activity. In control experiments, appropriate normal (non-immune) sera, normal gamma globulin, or the GIT-antiserum or the GIT-immunogamma globulin which had been previously neutralized with purified rat liver GIT were found to be completely ineffective in abolishing the insulin-dependent PDE activity of fat cells. These results suggest that the GIT-catalyzed sulfhydryl-disulfide inter-change reaction with insulin might be part of the mechanism by which insulin regulates the intracellular cyclic AMP concentration.  相似文献   

14.
The reactions of levoglucosenone with a variety of dienes ranging from 1,3-butadiene to 1,3-diphenylisobenzofuran have been investigated and found to provide a variety of multicyclic products in good yield. With the exception of furan, the adducts were formed by the “4 + 2” cycloaddition reaction. The structures of these products are discussed on the basis of their p.m.r and c.m.r. data. 3-Bromolevoglucosan reacts with 1,3-butadiene to provide the expected product.  相似文献   

15.
Agents such as N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), and its derivatives, chlorpromazine and amitriptyline that interact with calcium-regulated modulator protein were found to inhibit not only Ca2+ dependent cyclic nucleotide phosphodiesterase but also Ca2+-Mg2+-ATPase of human erythrocyte ghosts. I50 values of modulator interacting agents for testis modulator-activated, brain modulator-activated and erythrocyte modulator-activated-ATPase are indistinguishable. However, I50 of W-7 for troponin C-activated-ATPase is lower than that for modulator-activated ATPase. The specificity of these agents toward modulator-related enzyme reaction is also shown by the negative effect on modulator-unrelated enzyme system such as erythrocyte ghost protein kinase and Mg2+-ATPase. These agents provide a useful tool for elucidating the physiological role of modulator.  相似文献   

16.
Crude subcellular fractions from rat uterus contain a HCO3-stimulated Mg2+-ATPase with properties analogous to those previously reported for the enzyme in gastric mucosa, pancreas, salivary gland and liver lysosome. Estradiol-17β treatment of ovariectomized rats resulted in an increase in uterine mitochondrial (HCO3 + Mg2+)-ATPase and Mg2+-ATPase activity. In an early response (105 min) to estradiol-17β treatment of ovariectomized rats, the lysosomal enzyme, β-N-acetylglucosaminidase increased in the nuclear and mitochondrial fractions and decreased in the microsomal and supernatant fractions.  相似文献   

17.
Selenium in animal tissues was found to influence the reactivity of mercury in the tissues with stannous chloride or with stannous chloride plus cadmium chloride added as reducing agents for the determination of mercury by the method developed by L. Magos (1971, Analyst, 96, 847–853) and L. Magos and T. W. Clarkson (1972, J. Assoc. Offic. Anal. Chem., 55, 966–971). The recovery of mercury in the tissues of animals to which inorganic mercury and selenite were simultaneously administered was low compared to the case in which inorganic mercury alone was administered. Of the in vitro interactions of inorganic mercury and selenite examined in tissue homogenates and blood samples, only those interactions in blood samples caused the difficulty in mercury analysis mentioned above, i.e., there was a marked decrease in recovery of mercury when an equimolar amount of each compound was added to the blood. These facts suggest that selenium and inorganic mercury in the animal tissues are likely to interact with each other and might form a chemically stable state of inorganic mercury which resists reduction with stannous chloride in the procedure for mercury determination.  相似文献   

18.
Previous studies showed that stimulation of mouse mitochondrial ATPase activity of tumor cells, fetal liver, and adult brain by the uncoupler 2,4-dinitrophenol was markedly suppressed during incubation of the mitochondria with the uncoupler (J.-I. Hayashi et al., 1980, Biochem. Biophys. Res. Commun.92, 261–267). The present work showed the reason for this suppression. More than half the endogenous Mg2+ leaked from mitochondria of all tumor cells tested, and of fetal liver and adult brain during incubation with the uncoupler, while only about 30% of the endogenous Mg2+ leaked from mitochondria of other normal tissues. The effect of the uncoupler on Mg2+ leakage from liver mitochondria changed from the fetal to the adult type within about 30 min after birth. In hypotonic medium, normal liver mitochondria also lost more than half their total Mg2+ and concomitantly stimulation of their ATPase activity by uncoupler was considerably reduced. Exogenously added Mg2+ could reverse this reduced effect of the uncoupler on ATPase activity of mitochondria from normal tissues and tumor cells. These results show that the endogenous Mg2+ content of mitochondria directly affects the stimulation by uncoupler of ATPase activity of mitochondria from both normal tissues and tumor cells. Thus, mitochondria of all tumor cells tested, and of fetal liver and adult brain are leaky to Mg2+ during incubation with uncoupler and as a result of the leakage, the stimulatory effect of the uncoupler on their ATPase activity is greatly reduced.  相似文献   

19.
The by-product (3) in the hydration of D-glucal (1) catalyzed by emulsin beta-D-glucosidase has been identified as 1,5-anhydro-2-deoxy-3-O-(2-deoxy-beta-D-arabino-hexopyranosyl)-D-arabino-hex-1-enitol. Two models for the formation of 3 are discussed, involving transfer of a 2-deoxy-D-arabino-hexopyranosyl cation to HO-3 of D-glucal (glycon transfer) and transfer of an allylic D-pseudoglucal cation to HO-1 of 2-deoxy-D-arabino-hexopyranose (aglycan transfer). The enzymic production of 3 is highly regiospecific, which lends support to the second model and implies the presence of a specific binding-site for the aglycon moiety.  相似文献   

20.
Comparison between the effects on various rat liver mitochondrial functions of ethacrynate, a thiol reagent inhibitor of oxidative phosphorylations [3, 4] and those of dihydroethacrynate its saturated derivative which is not a thiol reagent, has been performed. Both, ethacrynate and dihydroethacrynate increase oxygen consumption by mitochondria in state 4 (succinate as substrate) in a concentration dependent way (from 1 to 5 X 10(-4) M EA or DHEA). This activation is followed, only with ethacrynate, by an inhibition appearing sooner with higher concentrations. After preincubation or mitochondria with ethacrynate (1 to 5 X 10(-4) M), the stimulation of respiration by (ADP + Pi) is completely inhibited whereas it is only weakly affected by dihydroethacrynate at the same concentrations. Ethacrynate and dihydroethacrynate provoke variations of intramitochondrial Mg2+ and K+ levels which need energy from the respiratory chain. These are affected by Pi or (Pi + ADP) in a different way with ethacrynate and with dihydroethacrynate. After preincubation with mitochondria, ethacrynate and to a smaller extent dihydroethacrynate, inhibit partially ADP translocation; ADP increases the inhibitory effect of EA on translocation and not that of dihydroethacrynate. Ethacrynate increases the oligomycin sensitive ATPase activity and dihydroethacrynate still more. After a ten minutes preincubation with mitochondria, ethacrynate and dihydroethacrynate hardly affect the 2.4 DNP stimulated ATPase activity. Preincubation with succinate or ADP strongly increases the ethacrynate inhibition whereas it decreases dihydroethacrynate inhibition. Ethacrynate and dihydroethacrynate do not affect the efflux of Pi produced by ATP hydrolysis but ethacrynate enforces the inhibitory effect of mersalyl (Mg2+ containing medium). After ten minutes of preincubation with mitochondria, ethacrynate binds 25 nmoles of -SH/mg protein (DTNB titration) and dihydroethacrynate has no effect. These results show an effect of ethacrynate on two types of thiols linked with energy conservation mechanisms and ADP translocation. These thiols could be unmasked or made accessible by conformational modifications of the inner membrane upon energization or addition of ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号