首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic 5'-nucleotidase/phosphotransferase specific for 6-hydroxypurine monophosphate derivatives (cN-II), belongs to a class of phosphohydrolases that act through the formation of an enzyme-phosphate intermediate. Sequence alignment with members of the P-type ATPases/L-2-haloacid dehalogenase superfamily identified three highly conserved motifs in cN-II and other cytosolic nucleotidases. Mutagenesis studies at specific amino acids occurring in cN-II conserved motifs were performed. The modification of the measured kinetic parameters, caused by conservative and nonconservative substitutions, suggested that motif I is involved in the formation and stabilization of the covalent enzyme-phosphate intermediate. Similarly, T249 in motif II as well as K292 in motif III also contribute to stabilize the phospho-enzyme adduct. Finally, D351 and D356 in motif III coordinate magnesium ion, which is required for catalysis. These findings were consistent with data already determined for P-type ATPases, haloacid dehalogenases and phosphotransferases, thus suggesting that cN-II and other mammalian 5'-nucleotidases are characterized by a 3D arrangement related to the 2-haloacid dehalogenase superfold. Structural determinants involved in differential regulation by nonprotein ligands and redox reagents of the two naturally occurring cN-II forms generated by proteolysis were ascertained by combined biochemical and mass spectrometric investigations. These experiments indicated that the C-terminal region of cN-II contains a cysteine prone to form a disulfide bond, thereby inactivating the enzyme. Proteolysis events that generate the observed cN-II forms, eliminating this C-terminal portion, may prevent loss of enzymic activity and can be regarded as regulatory phenomena.  相似文献   

2.
Cytosolic 5′ nucleotidase II (cN-II) catalyses both the hydrolysis of a number of nucleoside monophosphates (e.g., IMP + H2O→ inosine + Pi), and the phosphate transfer from a nucleoside monophosphate donor to the 5′ position of a nucleoside acceptor (e.g., IMP + guanosine → inosine + GMP). The enzyme protein functions through the formation of a covalent phosphoenzyme intermediate, followed by the phosphate transfer either to water (phosphatase activity) or to a nucleoside (phosphotransferase activity). It has been proposed that cN-II regulates the intracellular concentration of IMP and GMP and the production of uric acid. The enzyme might also have a potential therapeutic importance, since it can phosphorylate some anti-tumoral and antiviral nucleoside analogues that are not substrates of known kinases. In this review we summarise our recent studies on the structure, regulation and function of cN-II. Via a site-directed mutagenesis approach, we have identified the amino acids involved in the catalytic mechanism and proposed a structural model of the active site. A series of in vitro studies suggests that cN-II might contribute to the regulation of 5-phosphoribosyl-1-pyrophosphate (PRPP) level, through the so-called oxypurine cycle, and in the production of intracellular adenosine, formed by ATP degradation.  相似文献   

3.
Catabolism of AMP during ATP breakdown produces adenosine, which restores energy balance. Catabolism of IMP may be a key step regulating purine nucleotide pools. Two, cloned cytosolic 5'-nucleotidases (cN-I and cN-II) have been implicated in AMP and IMP breakdown. To evaluate their roles directly, we expressed recombinant pigeon cN-I or human cN-II at similar activities in COS-7 or H9c2 cells. During rapid (more than 90% in 10 min) or slower (30-40% in 10 min) ATP catabolism, cN-I-transfected COS-7 and H9c2 cells produced significantly more adenosine than cN-II-transfected cells, which were similar to control-transfected cells. Inosine and hypoxanthine concentrations increased only during slower ATP catabolism. In COS-7 cells, 5'-nucleotidase activity was not rate-limiting for inosine and hypoxanthine production, which was therefore unaffected by cN-II- and actually reduced by cN-I- overexpression. In H9c2 cells, in which 5'-nucleotidase activity was rate-limiting, only cN-II overexpression accelerated inosine and hypoxanthine formation. Guanosine formation from GMP was also increased by cN-II. Our results imply distinct roles for cN-I and cN-II. Under the conditions tested in these cells, only cN-I plays a significant role in AMP breakdown to adenosine, whereas only cN-II breaks down IMP to inosine and GMP to guanosine.  相似文献   

4.
Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap?A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap?A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.  相似文献   

5.
Intracellular accumulation of triphosphorylated derivatives is essential for the cytotoxic activity of nucleoside analogues. Different mechanisms opposing this accumulation have been described. We have investigated the dephosphorylation of monophosphorylated fludarabine (F-ara-AMP) by the purified cytoplasmic 5'-nucleotidase cN-II using HPLC and NMR. These studies clearly showed that cN-II was able to convert F-ara-AMP into its non phosphorylated form, F-ara-A, with a Km in the millimolar range and Vmax = 35 nmol/min/mg, with both methods. Cytoplasmic 5'-nucleotidase cN-II can degrade this clinically useful cytotoxic nucleoside analogue and its overexpression is thus likely to be involved in resistance to this compound.  相似文献   

6.
IMP preferring cytosolic 5'-nucleotidase II (cN-II) is a widespread enzyme whose amino acid sequence is highly conserved among vertebrates. Fluctuations of its activity have been reported in some pathological conditions and its mRNA levels have been proposed as a prognostic factor for poor outcome in patients with adult acute myeloid leukemia. As a member of the oxypurine cycle, cN-II is involved in the regulation of intracellular concentration of 5'-inosine monophosphate (IMP), 5'-guanosine monophosphate (GMP), and also 5-phosphoribose 1-pyrophosphate (PRPP) and is therefore involved in the regulation of purine and pyrimidine de novo and salvage synthesis. In addition, several studies demonstrated the involvement of cN-II in pro-drug metabolism. Notwithstanding some publications indicating that cN-II is essential for the survival of several cell types, its role in cell metabolism remains uncertain. To address this issue, we built two eucaryotic cellular models characterized by different cN-II expression levels: a constitutive cN-II knockdown in the astrocytoma cell line (ADF) by short hairpin RNA (shRNA) strategy and a cN-II expression in the diploid strain RS112 of Saccharomyces cerevisiae. Preliminary results suggest that cN-II is essential for cell viability, probably because it is directly involved in the regulation of nucleotide pools. These two experimental approaches could be very useful for the design of a personalized chemotherapy.  相似文献   

7.
Adenosine increases blood flow and decreases excitatory nerve firing. In the heart, it reduces rate and force of contraction and preconditions the heart against injury by prolonged ischemia. Based on indirect kinetic arguments, an AMP-selective cytosolic 5'-nucleotidase designated cN-I has been implicated in adenosine formation during ATP breakdown. The molecular identity of cN-I is unknown, although an IMP/GMP-selective cytosolic 5'-nucleotidase (cN-II) and an ecto-5'-nucleotidase (e-N) have been cloned. We utilized the high abundance of cN-I in pigeon heart to purify a 40-kDa subunit for partial protein sequencing and subsequent cDNA cloning. We obtained a full-length clone encoding a novel 40-kDa peptide, unrelated to cN-II or e-N, that was most abundant in heart, brain, and breast muscle. Immunolocalization in heart showed a striated cytoplasmic location, suggesting association with contractile elements. Transient expression in COS-7 cells, generated a 5'-nucleotidase that catalyzed adenosine formation from AMP, which was increased during ATP catabolism. In conclusion, the cloning and expression of cN-I provides definitive evidence of its ability to produce adenosine during ATP breakdown.  相似文献   

8.
IMP preferring cytosolic 5'-nucleotidase (cN-II) is an ubiquitous nucleotide hydrolysing enzyme. The enzyme is widely distributed and its amino acid sequence is highly conserved among vertebrates. Fluctuations of cN-II activity have been associated with the pathogenesis of neurological disorders. The enzyme appears to be involved in the regulation of the intracellular availability of the purine precursor IMP and also of GMP and AMP, but the contribution of this activity and of its regulation to cell metabolism and to CNS cell functions remains uncertain. To address this issue, we used a vector based short hairpin RNA (shRNA) strategy to knockdown cN-II activity in human astrocytoma cells. Our results demonstrated that 53 h after transduction, cN-II mRNA was reduced to 17.9+/-0.03% of control cells. 19 h later enzyme activity was decreased from 0.7+/-0.026 mU/mg in control ADF cells to 0.45+/-0.046 mU/mg, while cell viability (evaluated by the MTT reduction assay) decreased up to 0.59+/-0.01 (fold vs control) and caspase 3 activity increased from 136+/-5.8 pmol min(-1) mg(-1) in control cells to 639+/-37.5 pmol min(-1) mg(-1) in silenced cells, thus demonstrating that cN-II is essential for cell survival. The decrease of enzyme activity causes apoptosis of the cultured cells without altering intracellular nucleotide and nucleoside concentration or energy charge. Since cN-II is highly expressed in tumour cells, our finding offers a new possible therapeutical approach especially against primary brain tumours such as glioblastoma, and to ameliorate chemotherapy against leukemia.  相似文献   

9.
Human prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) is a dimeric (alpha 2) protein that catalyses the hydrolysis of phosphomonoesters. Several reports suggest that a phosphoenzyme intermediate is involved in the mechanism of acid phosphatase. Chemical modification studies and trapping experiments were therefore undertaken in order to ascertain the identity of the amino acid residue(s) involved in the formation of this intermediate. Human prostatic acid phosphatase is inactivated by diethyl pyrocarbonate (second-order rate constant of 7 M-1. min-1 at pH 6.2) with an accompanying increase in absorbance at 242 nm due to formation of ethoxyformylhistidyl derivatives. In the presence of competive inhibitors the rate of inactivation is decreased. Inactivation can be partially reversed by hydroxylamine. The pH curve of inactivation indicates the involvement of a residue having a pK alpha of 6.5. Direct evidence for the involvement of a histidine residue in the mechanism was obtained by trapping a covalent phosphohistidyl-enzyme intermediate. Incubation of the enzyme with p-nitrophenyl [32 P] phosphate leads to incorporation of 0.44 mol 32P/mol enzyme. The denatured phosphoenzyme,which was acid labile but base stable, was hydrolyzed in 3 M KOH and the radioactivity was found to cochromatograph with synthetic tau-phosphohistidine on Dowex-1 ion-exchange resin. These results are consistent with a catalytic mechanism involving histidine as a nucleophile in the formation of a covalents phosphoenzyme intermediate.  相似文献   

10.
In order to investigate the function of Asp-327, a bidentate ligand of one of the zinc atoms in Escherichia coli alkaline phosphatase, and the importance of this zinc atom in catalysis, site-specific mutagenesis was used to convert Asp-327 to either asparagine or alanine. The 10(7)-fold decrease in the kcat/Km ratio observed for the Asp-327----Ala enzyme compared to the wild-type enzyme indicates that the side chain of Asp-327 is important for zinc binding at the M1 site. However, only one of the two carboxyl oxygens of Asp-327 is essential for zinc binding, since the Asp-327----Asn enzyme shows approximately the same hydrolysis activity as the wild-type enzyme. The fact that the enzymatic activity of this mutant enzyme shows a dependence on zinc concentration suggests that the other carboxyl oxygen or the negative charge on the side chain of Asp-327 is important in binding of the zinc at the M1 site. However, the zinc hydroxyl must still be appropriately positioned to attack the phosphoserine in the Asp-327----Asn enzyme; therefore, the negative charge and at least one carboxyl oxygen of the side chain are not directly involved in positioning or deprotonating the zinc hydroxyl. 31P NMR studies indicate that the Asp-327----Asn enzyme exhibits transphosphorylation activity at both pH 8.0 and pH 10.0, but at a reduced level compared to the wild-type enzyme. The biphasic production of 2,4-dinitrophenylate in the pre-steady-state kinetics of the mutant enzymes at pH 5.5 suggests that the breaking of the phosphoenzyme covalent complex is rate-limiting for both mutant enzymes. These results suggest that the main function of the zinc atom at the M1 site in catalysis involves decomposition of the phosphoenzyme covalent complex and that it may be important in helping to stabilize the alcohol leaving group.  相似文献   

11.
Cytosolic 5'-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5'-nucleotidase II as native protein (2.2 Angstrom) and in complex with adenosine (1.5 Angstrom) and beryllium trifluoride (2.15 Angstrom) The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5'(3')-deoxyribonucleotidase and cytosolic 5'-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5'-nucleotidase II with that of mitochondrial 5'(3')-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition.  相似文献   

12.
We re-examined the kinetics of the bisphosphatase reaction of rat hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase after depleting the enzyme of bound fructose 6-phosphate and found a hyperbolic dependence on fructose 2,6-bisphosphate at concentrations below 100 nM. The Michaelis constant was 4 nM, the Vmax was about 12 nmol X mg-1 X min-1 at 22 degrees C but the substrate inhibited at concentrations above 100 nM. Both phosphate and alpha-glycerol phosphate strongly inhibited phosphoenzyme formation and hydrolytic rate below 100 nM, but relieved the inhibition by substrate at higher concentrations probably by antagonizing substrate binding. A number of observations support the proposition that the phosphoenzyme is a necessary participant in catalysis. 1) The amount of phosphoenzyme measured during steady-state hydrolysis as a function of substrate concentration correlated with the velocity profile. 2) Rapid mixing experiments demonstrated that over a broad range of substrate concentrations phosphoenzyme formation was faster than the net rate of hydrolysis. 3) Both phosphate and alpha-glycerol phosphate inhibited the rate of phosphoenzyme formation and, at low substrate concentrations, reduced the steady-state phosphoenzyme levels. The latter correlated with inhibition of substrate hydrolysis. 4) Both phosphate and alpha-glycerol phosphate stimulate the rate of phosphoenzyme breakdown, consistent with their stimulation of substrate hydrolysis at high substrate concentrations. 5) The fractional rate of phosphoenzyme breakdown, which was pH and substrate dependent, multiplied by the amount of phosphoenzyme obtained in the steady state at that pH and substrate concentration approximated the observed rate of hydrolysis. We conclude that the phosphoenzyme is a reaction intermediate in the hepatic fructose-2,6-bisphosphatase reaction.  相似文献   

13.
Slow dissociation of ATP from the calcium ATPase   总被引:1,自引:0,他引:1  
The acyl-phosphate intermediate of the sarcoplasmic reticulum calcium ATPase reaction, formed in a brief incubation of vesicular enzyme with 5 microM [gamma-32P]ATP and calcium, reacts biphasically with added ADP (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4). Both the burst size and the rate constant for the slow phase increase with increasing ADP concentration in the way that is expected if the burst represents very rapid formation of an equilibrium amount of enzyme-bound ATP and the slow phase represents rate-limiting dissociation of ATP. Also consistent with this interpretation are the slow labeling of phosphoenzyme under conditions in which unlabeled ATP must dissociate first and the observation of a burst of ATP formation on ADP addition to phosphoenzyme. Values of the equilibrium constants for ADP dissociation from phosphoenzyme (0.75 mM), for ATP formation on the enzyme (2.3), and for the ATP dissociation rate constant (37 s-1) were obtained from a quantitative analysis of the data.  相似文献   

14.
A cytosolic 5'-nucleotidase, acting preferentially on IMP and GMP, has been isolated from human colon carcinoma extracts. This enzyme activity catalyzes also the transfer of the phosphate group of 5'-nucleoside monophosphates (mainly, 5'-IMP, 5'-GMP, and their deoxycounterparts) to nucleosides (preferentially inosine and deoxyinosine, but also nucleoside analogs, such as 8-azaguanosine and 2',3'-dideoxyinosine). It has been proposed that the enzyme mechanism involves the formation of a phosphorylated enzyme as an intermediate which can transfer the phosphate group either to water or to the nucleoside. The enzyme is activated by some effectors, such as ATP and 2,3-diphosphoglycerate. Results indicate that the effect of these activators is mainly to favor the transfer of the phosphate of the phosphorylated intermediate to the nucleoside (i.e., the nucleoside phosphotransferase activity). This finding is in accordance with previous suggestions that cytosolic 5'-nucleotidase cannot be considered a pure catabolic enzyme.  相似文献   

15.
Cytosolic 5'-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5'-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues.  相似文献   

16.
Enzyme preparations with variable phospholipid contents were obtained by removing lipids from sarcoplasmic reticulum with deoxycholate. Preparations containing from 90 to 37 phospholipids per enzyme showed normal values of both Ca2+-ATPase activity and steady-state phosphoenzyme levels. Fractions containing 37 to 23 phospholipids per enzyme had a reduced ATPase activity but normal phosphoenzyme levels, showing that in this range of lipid content the ATPase reaction is inhibited in a reaction step subsequent to phosphoenzyme formation but prior to phosphoenzyme decomposition. Delipidation below 23 lipids per enzyme caused a marked reduction of the amount of phosphoenzyme formed, so that although both reactions require lipids, fewer lipids are required for phosphoenzyme formation than for decomposition. The effect of lipid removal could be completely reversed by readdition of lipids to fractions containing more than 11 lipids per enzyme. It is proposed that phosphoenzyme formation requires full occupancy of a boundary domain of 23 lipids per enzyme, and that the selective inhibition of phosphoenzyme decomposition at higher lipid contents is caused by a decrease in the rotational mobility of the enzyme.  相似文献   

17.
In many vertebrate tissues, cytosolic 5'-nucleotidase II (cN-II) either hydrolyses or phosphorylates a number of purine (monophosphorylated) nucleosides through a scheme common to the Haloacid Dehalogenase superfamily members. It possesses a pivotal role in purine cellular metabolism and it acts on anti-tumoural and antiviral nucleoside analogues, thus being of potential therapeutic importance. cN-II is Mg2+-dependent, regulated and stabilised by several factors such as allosteric effectors ATP and 2,3-DPG, although these are not directly involved in the reaction stoichiometry. We review herein the experimental knowledge currently available about this remarkable enzymatic activity.  相似文献   

18.
Although the activation of low-molecular weight protein tyrosine phosphatases by certain purines and purine derivatives was first described three decades ago, the mechanism of this rate enhancement was unknown. As an example, adenine activates the yeast low-molecular weight protein tyrosine phosphatase LTP1 more than 30-fold. To examine the structural and mechanistic basis of this phenomenon, we have determined the crystal structure of yeast LTP1 complexed with adenine. In the crystal structure, an adenine molecule is found bound in the active site cavity, sandwiched between the side chains of two large hydrophobic residues at the active site. Hydrogen bonding to the side chains of other active site residues, as well as some water-mediated hydrogen bonds, also helps to fix the position of the bound adenine molecule. An ordered water was found in proximity to the bound phosphate ion present in the active site, held by hydrogen bonding to N3 of adenine and Odelta1 of Asp-132. On the basis of the crystal structure, we propose that this water molecule is the nucleophile that participates in the dephosphorylation of the phosphoenzyme intermediate. Solvent isotope effect studies show that there is no rate-determining transfer of a solvent-derived proton in the transition state for the dephosphorylation of the phosphoenzyme intermediate. Such an absence of general base catalysis of water attack is consistent with the stability of the leaving group, namely, the thiolate anion of Cys-13. Consequently, adenine activates the enzyme by binding and orienting a water nucleophile in proximity to the phosphoryl group of the phosphoenzyme intermediate, thus increasing the rate of the dephosphorylation step, a step that is normally the rate-limiting step of this enzymatic reaction.  相似文献   

19.
A calcium-transport ATPase is inserted into the endoplasmic reticulum of rat liver. Catalysis of calcium translocation involves transient covalent binding of the terminal phosphate residue of ATP by the enzyme, resulting in the formation of an alkali- and hydroxylamine-labile phosphorylprotein intermediate. Both MgATP as well as CaATP can be utilized in the phosphorylation reaction which requires calcium as a cofactor. Magnesium accelerates the turnover of the phosphorylprotein intermediate. An ADP-reactive and ADP-unreactive state of the phosphoenzyme could be distinguished. In the ADP-reactive state with tightly bound calcium, the phosphoenzyme can transphosphorylate its phosphate residue to ADP, giving rise to synthesis of ATP. The ADP-reactive phosphoenzyme can be converted into an ADP-unreactive state by prolonged incubation with excess EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid). It is suggested that this conversion is brought about by the removal of tightly bound calcium from the phosphoenzyme. A strong homology of the sequential reaction steps during calcium translocation by the calcium-transport ATPases in endoplasmic reticulum from rat liver and sarcoplasmic reticulum from skeletal muscle is suggested.  相似文献   

20.
W J Ball 《Biochemistry》1986,25(22):7155-7162
The effects of a monoclonal antibody, prepared against the purified lamb kidney Na+,K+-ATPase, on the enzyme's Na+,K+-dependent ATPase activity were analyzed. This antibody, designated M10-P5-C11, is directed against the catalytic subunit of the "native" holoenzyme. It inhibits greater than 90% of the ATPase activity and acts as a noncompetitive or mixed inhibitor with respect to the ATP, Na+, and K+ dependence of enzyme activity. It inhibits the Na+- and Mg2+ATP-dependent phosphoenzyme intermediate formation. In contrast, it has no effect on K+-dependent p-nitrophenylphosphatase (pNPPase) activity, the interconversion of the phosphoenzyme intermediates, and ADP-sensitive or K+-dependent dephosphorylation. It does not alter ATP binding to the enzyme nor the covalent labeling of the enzyme at the presumed ATP site by fluorescein 5'-isothiocyanate (FITC), but it prevents the ATP-induced stimulation in the rate of cardiac glycoside [3H]ouabain binding to the Na+,K+-ATPase. M10-P5-C11 binding appears to inhibit enzyme function by blocking the transfer of the gamma-phosphoryl of ATP to the phosphorylation site after ATP binding to the enzyme has occurred. In the presence of Mg2+ATP, it also prevents the ATP-induced transmembrane conformational change that enhances cardiac glycoside binding. This uncoupling of ATP binding from its stimulation of ouabain binding and enzyme phosphorylation demonstrates the existence of an enzyme-Mg2+ATP transitional intermediate preceding the formation of the Na+-dependent ADP-sensitive phosphoenzyme intermediate. These results are also consistent with a model of the Na+,K+-ATPase active site being composed of two distinct but interacting regions, the ATP binding site and the phosphorylation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号