首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the properties of the timer that regulates the onset of gastrulation in the Xenopus embryo. Pre-gastrulation embryos were exposed to aphidicolin, vinblastine, 6-dimethylaminopurine (6-DMAP) or urethane. Embryos exposed to aphidicolin or vinblastine for 0.5-2 h before the presumptive onset of gastrulation, began gastrulation at the same time as control embryos. However, those exposed to 6-DMAP or urethane commenced gastrulation significantly later than controls. In 6-DMAP- and urethane-treated embryos, the onset of gastrulation was retarded by approximately 25% and 120%, respectively. 6-DMAP and urethane, but not vinblastine, also lowered the rate of nuclear doubling by 30% and 120%, respectively, in late-blastula to early-gastrula embryos. 6-DMAP and urethane also lowered the rate of cleavage and cleavage-relevant cytoplasmic cycling by 30% and 80%, respectively, in cleavage-stage embryos. We propose that cytoplasmic activities that can be retarded by 6-DMAP and urethane, but not aphidicolin or vinblastine, may be responsible for regulating the onset of gastrulation in Xenopus embryos.  相似文献   

2.
This study examined which component of the egg, the nucleus or cytoplasm, is involved in the timing of the start of gastrulation in the Xenopus embryo, and when it starts to measure time. First, nuclei of cells of 256-cell stage embryos were transplanted to enucleated eggs 60 min after activation. These eggs showed first cleavage 20-30 min later than control eggs fertilized at the same time as the activation of recipient eggs, and started gastrulation 25-35 min later than control embryos (depending on the delay in the first cleavage). Second, eggs whose nuclei were temporarily isolated by the extrusion of the portion containing the nucleus out of the fertilization envelope showed first cleavage 60-90 min later than sibling control eggs, because of delayed introduction of the nucleus from the extruded portion. They started gastrulation 60-90 min later than sibling control embryos (depending on the delay in the first cleavage). The portion inside the envelope underwent two to three rounds of oscillation in cell cycle relevant activities before the first cleavage, while the portion outside underwent the same rounds of cleavage as the inside portion. From the present and previous results it is concluded that the putative timing system for the start of gastrulation in the Xenopus embryo, whether it consists of a single or of multiple clocks, starts measuring time at or around the first cleavage, and that the presence of both the nucleus and the cytoplasm in the same cell and occurrence of mitosis and/or cleavage there are indispensable for the timing system to work, although the role of the cytoplasm is superior to that of the nucleus.  相似文献   

3.
We examined the spatial relationships between the meridian of sperm entry the plane of first cleavage, and the embryonic axis (defined by the neural groove) in eggs of Xenopus laevis. Direct measurement of the angular separations between these embryonic structures in gelatin-embedded eggs confirmed the classical conclusion that the sperm entry point and neural groove tend to form on opposite sides of the egg, and also revealed that the first cleavage plane has a nearly random orientation with respect to the neural groove. We next examined the distortion of the first cleavage plane that results from the normal processes of convergence and extension during gastrulation and neurulation. We permanently marked the first cleavage plane by injecting one blastomere of the two-cell embryo with a fluorescent lineage marker. At the start of gastrulation, the interface between the labeled and unlabeled regions was almost randomly oriented relative to the dorsal blastopore lip, confirming our first set of observations. In embryos with the interface less than 60 degrees to the plane passing through the midline of the dorsal lip, convergent movements of cells produced a confrontation of labeled and unlabeled cells along much of the dorsal midline. Thus, although the first cleavage plane and the bilateral plane were frequently not congruent, the morphogenetic movements of gastrulation and neurulation brought about an apparent congruence in many half-labeled embryos.  相似文献   

4.
The morphology of the gastrocoel roof plate and the presence of cilia in this structure were examined in embryos of four species of frogs. Embryos of Ceratophrys stolzmanni (Ceratophryidae) and Engystomops randi (Leiuperidae) develop rapidly, provide comparison for the analysis of gastrocoel roof plate development in the slow-developing embryos of Epipedobates machalilla (Dendrobatidae) and Gastrotheca riobambae (Hemiphractidae). Embryos of the analyzed frogs develop from eggs of different sizes, and display different reproductive and developmental strategies. In particular, dorsal convergence and extension and archenteron elongation begin during gastrulation in embryos of rapidly developing frogs, as in Xenopus laevis. In contrast, cells that involute during gastrulation are stored in the large circumblastoporal collar that develops around the closed blastopore in embryos of slow-developing frogs. Dorsal convergence and extension only start after blastopore closure in slow-developing frog embryos. However, in the neurulae, a gastrocoel roof plate develops, despite the accumulation of superficial mesodermal cells in the circumblastoporal collar. Embryos of all four species develop a ciliated gastrocoel roof plate at the beginning of neurulation. Accordingly, fluid-flow across the gastrocoel roof plate is likely the mechanism of left-right asymmetry patterning in these frogs, as in X. laevis and other vertebrates. A ciliated gastrocoel roof plate, with a likely origin as superficial mesoderm, is conserved in frogs belonging to four different families and with different modes of gastrulation.  相似文献   

5.
Blastopore formation, the embryonic disk, archenteron and notochord elongation, and Brachyury expression in the marsupial frog Gastrotheca riobambae was compared with embryos of Xenopus laevis and of the dendrobatids Colostethus machalilla and Epipedobates anthonyi. In contrast with X. laevis embryos, the blastopore closes before elongation of the archenteron and notochord in the embryos of G. riobambae and of the dendrobatid frogs. Moreover, the circumblastoporal collar (CBC) thickens due to the accumulation of involuted cells. An embryonic disk, however, is formed only in the G. riobambae gastrula. We differentiate three gastrulation patterns according to the speed of development: In X. laevis, elongation of the archenteron and notochord begin in the early to mid gastrula, whereas in the dendrobatids C. machalilla and E. anthonyi the archenteron elongates at mid gastrula and the notochord elongates after gastrulation. In G. riobambae, only involution takes place during gastrulation. Archenteron and notochord elongation occur in the post gastrula. In the non-aquatic reproducing frogs, the margin of the archenteron expands anisotropically, resulting in an apparent displacement of the CBC from a medial to a posterior location, resembling the displacement of Hensen's node in the chick and mouse. The differences detected indicate that amphibian gastrulation is modular.  相似文献   

6.
The onset of gastrulation at the Mid-Blastula Transition can accompany profound changes in embryonic cell cycles including the introduction of gap phases and the transition from maternal to zygotic control. Studies in Xenopus and Drosophila embryos have also found that cell cycles respond to DNA damage differently before and after MBT (or its equivalent, MZT, in Drosophila). DNA checkpoints are absent in Xenopus cleavage cycles but are acquired during MBT. Drosophila cleavage nuclei enter an abortive mitosis in the presence of DNA damage whereas post-MZT cells delay the entry into mitosis. Despite attributes that render them workhorses of embryonic cell cycle studies, Xenopus and Drosophila are hardly representative of diverse animal forms that exist. To investigate developmental changes in DNA damage responses in a distant phylum, I studied the effect of an alkylating agent, Methyl Methanesulfonate (MMS), on embryos of Hydractinia echinata. Hydractinia embryos are found to differ from Xenopus embryos in the ability to respond to a DNA damaging agent in early cleavage but are similar to Xenopus and Drosophila embryos in acquiring stronger DNA damage responses and greater resistance to killing by MMS after the onset of gastrulation. This represents the first study of DNA damage responses in the phylum Cnidaria.  相似文献   

7.
Samaké S  Smith LC 《Theriogenology》1997,48(6):969-976
To date, methods for synchronizing the cell division of ungulate embryos without reducing their developmental potential have not been reliable or simple. The overall objective of this study was to determine the reliability of aphidicolin, a powerful inhibitor of eukaryotic DNA synthesis, to arrest and synchronize blastomere division in cleavage-stage bovine embryos and to assess its reversibility and toxicity in vitro. Eight-cell stage embryos obtained at 58 h post insemination were treated with several concentrations of aphidicolin for 12 h. Treated embryos were assessed for cleavage arrest, chromatin morphology and DNA synthesis; scored for blastocyst formation and hatching rate; and fixed for determination of the number of nuclei. Complete arrest of cell division was observed at aphidicolin concentrations of 1.4 microM and above. At these concentrations, no morphological alteration to interphase chromatin was observed in treated embryos compared with the controls. Removal of aphidicolin led to at least a 4-h delay before resumption of DNA synthesis and cleavage. The ability of treated embryos to reach the blastocyst stage in vitro, the hatching rate and the number of cells per blastocyst were significantly reduced compared with the control group. Since the ability of treated embryos to develop to the blastocyst stage was significantly reduced even at the minimal effective dosage, it is concluded that aphidicolin is unlikely to provide suitable cell cycle synchronization without damage to the embryos.  相似文献   

8.
To provide a developmental correlate with other frogs, we prepared a normal table of development for the dendrobatid, Colostethus machalilla and analyzed the morphology of its early development. This frog reproduces in captivity and deposits moderately sized eggs (1.6 mm in diameter) in terrestrial nests. The father guards the embryos until tadpole hatching. We divided development until hatching into 25 stages and implemented methods for in vitro culture of the embryos. The external and internal morphology of embryos were evaluated by observations in whole mount and in sections. Neural, notochord and somite specific antibodies were used to analyze gene expression patterns by immunostaining of embryos. Embryonic development of C. machalilla is slow and deviates from Xenopus laevis. In C. machalilla the elongation of the notochord, neural plate and somite formation occur after blastopore closure, possibly due to a delay in the dorsal convergence and extension movements. The gastrula of C. machalilla also deviates from X. laevis. The archenteron remains small until blastopore closure, where small cells accumulate at the blastopore lips. Simultaneously, the blastocoel roof thins until it becomes a monolayer of cells. Although C. machalilla does not form an embryonic disk, its thick blastopore lips resemble the embryonic disk of the marsupial frog Gastrotheca riobambae and represent an interesting deviation from the gastrulation pattern observed in X. laevis.  相似文献   

9.
Mitochondria isolated from Xenopus laevis embryos at various developmental stages show a good oxidative capacity and an acceptable respiratory control provided that certain requirements are fulfilled. The rates of respiration with pyruvate and Krebs' cycle intermediates, especially with citrate and isocitrate, are very low during cleavage stages and increase after gastrulation. Glutamate in the presence of malate is the only substrate to be readily oxidized during early development and its rate of oxidation decreases after gastrulation. These results, together with the altered sensitivity of embryonic mitochondria towards azide, support the view that the oxidative metabolism undergoes important changes around gastrulation and is associated with mitochondrial differentiation.  相似文献   

10.
Timers in Early Development of Sea Urchin Embryos   总被引:2,自引:1,他引:1  
To elucidate the timing mechanisms in the early development of sea urchin embryos, we measured the times of initiation of the first four cleavages, of ciliary movement, of primary mesenchyme cell ingression, and of gastrulation at four temperatures ranging from 11 to 20°C. The times of cleavage and of initiation of ciliary movement showed similar temperature dependency, indicating that these events may be controlled by a common timer (the first timer). Although batches of eggs often showed variation in the period between fertilization and the first cleavage, their subsequent cleavages were more regular. This indicates that the first timer may not start at fertilization. The ingression of mesenchyme cells and the onset of gastrulation showed similar temperature dependency that was higher than that of other events, suggesting the existence of a second timer. Temperature shift experiments indicate that the second timer starts at the mid-blastula (the 8–9th cleavage) stage when divisions of blastomeres become asynchronous.  相似文献   

11.
The production of an enlarged head or macrocephaly in frog embryos can be achieved by interspecific hybridization or by injection of the contents of the germinal vesicle (GV), the large nucleus of immature oocytes, into the blastocoels of embryos before they gastrulate. The macrocephalic embryos have large suckers and their neural tubes are larger anteriorly but smaller posteriorly as compared to controls. This abnormal syndrome has previously been thought to arise as a result of an axial structure determinant present in the germinal vesicle. When examined during gastrulation, however, Xenopus laevis and Rana pipiens macrocephalic embryos produced by GV injection as well as macrocephalic embryos produced by the hybrid cross, Rana septentrionalis female X Rana catesbeiana male, all exhibit alterations in the pattern of gastrulation. The most striking of these alterations is the persistence throughout gastrulation of a thick blastocoel roof composed of many cell layers, suggesting that there is an inhibition of posterior spreading of the roof normally associated with epiboly. In R. pipiens, the dorsal mesodermal mantle of GV-injected gastrulae is thicker as compared to controls, accounting for a neural plate which is wide at the anterior end. Vital dye mapping experiments on Xenopus laevis embryos show that dye marks placed on regions normally fated to become trunk epidermis become localized anteriorly when the embryos are GV injected, consistent with the idea that ectodermal cells are inhibited from moving posteriorly. These results indicate that the macrocephalic syndrome can be attributed to a localized inhibition of cell rearrangements during gastrulation as opposed to the effects of altered inducers or to axial determinants.  相似文献   

12.
13.
Incompatibilities between the nucleus and the cytoplasm of sufficiently distant species result in developmental arrest of hybrid and nucleocytoplasmic hybrid (cybrid) embryos. Several hypotheses have been proposed to explain their lethality, including problems in embryonic genome activation (EGA) and/or nucleo-mitochondrial interactions. However, conclusive identification of the causes underlying developmental defects of cybrid embryos is still lacking. We show here that while over 80% of both Xenopus laevis and Xenopus (Silurana) tropicalis same-species androgenetic haploids develop to the swimming tadpole stage, the androgenetic cybrids formed by the combination of X. laevis egg cytoplasm and X. tropicalis sperm nucleus invariably fail to gastrulate properly and never reach the swimming tadpole stage. In spite of this arrest, these cybrids show quantitatively normal EGA and energy levels at the stage where their initial gastrulation defects are manifested. The nucleocytoplasmic incompatibility between these two species instead results from a combination of factors, including a reduced emission of induction signal from the vegetal half, a decreased sensitivity of animal cells to induction signals, and differences in a key embryonic protein (Xbra) concentration between the two species, together leading to inefficient induction and defective convergence-extension during gastrulation. Indeed, increased exposure to induction signals and/or Xbra signalling partially rescues the induction response in animal explants and whole cybrid embryos. Altogether, our study demonstrates that the egg cytoplasm of one species may not support the development promoted by the nucleus of another species, even if this nucleus does not interfere with the cytoplasmic/maternal functions of the egg, while the egg cytoplasm is also capable of activating the genome of that nucleus. Instead, our results provide evidence that inefficient signalling and differences in the concentrations of key proteins between species lead to developmental defects in cybrids. Finally, they show that the incompatibilities of cybrids can be corrected by appropriate treatments.  相似文献   

14.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

15.
Three experiments determined first, the effect of increasing ammonium chloride (NH(4)Cl) concentrations on the growth and metabolism of bovine granulosa cells isolated from small and medium-sized bovine ovarian follicles; secondly, whether the changes in granulosa cell growth and metabolism induced by NH(4)Cl were reversible; and thirdly, whether granulosa cells, previously conditioned with NH(4)Cl, were able to support maturation of oocytes in vitro. In Experiment 1, using a 2 (follicle size class) x 5 (NH(4)Cl concentration) factorial design, granulosa cells from small or medium-sized ovarian follicles were incubated for 96 h with 0, 0.2, 0.4, 0.8 or 1.6 micromol NH(4)Cl/ml. Experiment 2 used a split plot factorial design where granulosa cells were incubated for 96 h in the presence or absence of 1 micromol/ml NH(4)Cl and then incubated in the absence or presence of 1 micromol/ml NH(4)Cl for a further 48 h. Finally in Experiment 3, ovine oocytes were matured on layers of bovine granulosa cells which had not been conditioned with NH(4)Cl or conditioned with 0.5 or 1.0 micromol/ml NH(4)Cl and development of embryos to the blastocyst stage followed and blastocyst quality assessed. In Experiment 1, incubation of granulosa cells in increasing concentrations of NH(4)Cl reduced cell growth, increased cell protein concentrations and increased the amounts of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) oxidised and oestradiol and progesterone produced per 10(5) cells. Cells from medium-sized follicles were more sensitive to NH(4)Cl concentration and oxidised more MTT and produced less progesterone at high NH(4)Cl concentrations than cells from small-sized follicles. When, in Experiment 2, NH(4)Cl was removed from cell culture after 96 h incubation, cells previously exposed to NH(4)Cl grew at a slower rate during the subsequent 48 h, contained more cellular protein, oxidised more MTT and produced more oestradiol and progesterone than cells not previously exposed to NH(4)Cl. Maturation of ovine oocytes in coculture with bovine granulosa cells not exposed to NH(4)Cl (Experiment 3) increased egg cleavage rate and the proportion of cleaved eggs which developed to the blastocyst stage. Conditioning of granulosa cells with NH(4)Cl supported egg cleavage and development to the blastocyst stage at rates similar to those observed in the absence of granulosa cells. In conclusion, these experiments showed that the in vitro growth and metabolism of granulosa cells were altered by concentrations of NH(4)Cl similar to ammonium ion concentrations measured in follicular fluid and that these effects were not immediately reversible. Furthermore, the ability of granulosa cells conditioned with NH(4)Cl to support in vitro maturation of oocytes was impaired.  相似文献   

16.
17.
Microinjections of antibodies directed against the protein encoded by the c-myc protooncogene strongly inhibit or arrest the early cell cleavage stage of Xenopus laevis embryos. Injections in one blastomere of a two cell stage embryo inhibit the segmentation of this blastomere. The cleavage of the uninjected blastomere behaves normally. Injections of control rabbit immunoglobulins do not alter the embryonic development.  相似文献   

18.
19.
The aim of this study was to determine the effects of a low frequency electric field on the early embryonic development of frogs. The embryos of African clawed toads, Xenopus laevis, were exposed to a 20-μA electric current during the cleavage stages. The developmental processes of embryos during and after electric field exposure were monitored for teratogenic effects. All the embryos continuously exposed to the electric field died without undergoing any developmental processes. However, when the embryos were exposed to the electric field for 20-min periods (four times/over 2 d), the embryos developed into both normal tadpoles (70 %) and malformed tadpoles with light edema, reduced pigmentation, or axial anomalies, such as crooked tails. After exposure, the control embryos were at development stage 35.5 (2 d 2 h), while the normal embryos of the assay group were at developmental stage 41(3 d 4 h). There was a 1 d 2 h difference between the two developmental stages, revealing the importance of that time period for embryogenesis. In conclusion, the effects of electric current on Xenopus embryos are dependent on the initial developmental stage and the duration of exposure.  相似文献   

20.
Platelet-derived growth factor receptor (PDGFR) signaling is required for normal gastrulation in Xenopus laevis. Embryos deprived of PDGFR signaling develop with a range of gastrulation-specific defects including spina bifida, shortened anteroposterior axis, and reduced anterior structures. These defects arise because the involuting mesoderm fails to move appropriately. In this study, we determine that inhibition of PDGFR signaling causes prospective head mesoderm cells to appear in the blastocoel cavity at the onset of gastrulation, stage 10. These aberrant cells undergo apoptosis via the caspase 3 pathway at an embryonic checkpoint called the early gastrula transition (EGT). They are TUNEL-positive and have increased levels of caspase 3 activity compared to control embryos. Apoptotic death of these mesoderm cells can be prevented by co-injection of mRNA encoding Bcl-2 or by injection of either a general caspase inhibitor or a caspase 3-specific inhibitor. Prevention of cell death, however, is not sufficient to rescue gastrulation defects in these embryos. Based on these data, we propose that PDGFR signaling is necessary for survival of prospective head mesoderm cells, and also plays an essential role in the control of their cell movement during gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号