首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The visual pigment rhodopsin has been extensively studied for the kinetics of its photointermediates by various spectroscopic methods. Unlike such archaeal retinal proteins as bacteriorhodopsin, visual rhodopsin does not thermally recover its dark state after photoexcitation, which precludes repeated excitation of a single sample and thereby complicates time-resolved experiments. Kinetic data on the late rhodopsin photointermediates have so far been available mainly from time-resolved ultraviolet (UV)-visible spectroscopy, but not from Fourier transform infrared (FTIR) spectroscopy. The latter has the advantage of being informative of structural changes of both chromophore and protein, but does not allow the highly reproducible, automated sample exchange procedures available to UV-visible spectroscopy. Using rapid-scan FTIR difference spectroscopy, we obtained time-resolved data sets that were analyzed by a maximum entropy inverse Laplace-transform. Covering the time range from 8 ms to 15 s at temperatures of 0 and -7 degrees C, the transitions from the Lumi to the Meta I and from the Meta I to the Meta II photoproduct states could be resolved. In the transition from Meta I to Meta II, our data reveal a partial deprotonation of the retinal Schiff base preceding the conformational change of the receptor protein to Meta II. The technique and the results are discussed in regard to its advantages as well as its limitations.  相似文献   

2.
Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences.  相似文献   

3.
Time-dependent studies of membrane protein function are hindered by extensive light scattering that impedes application of fast optical absorbance methods. Detergent solubilization reduces light scattering but strongly perturbs rhodopsin activation kinetics. Nanodiscs may be a better alternative if they can be shown to be free from the serious kinetic perturbations associated with detergent solubilization. To resolve this, we monitored absorbance changes due to photointermediates formed on the microsecond to hundred millisecond time scale after excitation of bovine rhodopsin nanodiscs and compared them to photointermediates that form in hypotonically washed native membranes as well as to those that form in lauryl maltoside suspensions at 15 and 30 °C over a pH range from 6.5 to 8.7. Time-resolved difference spectra were collected from 300 to 700 nm at a series of time delays after photoexcitation and globally fit to a sum of time-decaying exponential terms, and the photointermediates present were determined from the spectral coefficients of the exponential terms. At the temperatures and pHs studied, photointermediates formed after photoexcitation of rhodopsin in nanodiscs are extremely similar to those that form in native membrane, in particular displaying the normal forward shift of the Meta I(480) ? Meta II equilibrium with increased temperature and reduced pH which occurs in native membrane but which is not observed in lauryl maltoside detergent suspensions. These results were obtained using the amount of rhodopsin in nanodiscs which is required for optical experiments with rhodopsin mutants. This work demonstrates that late, physiologically important rhodopsin photointermediates can be characterized in nanodiscs, which provide the superior optical properties of detergent without perturbing the activation sequence.  相似文献   

4.
Vogel R  Siebert F 《Biopolymers》2003,72(3):133-148
Fourier transform IR (FTIR) spectroscopy has been successfully applied in recent years to examine the functional and structural properties of the membrane protein rhodopsin, a prototype G protein coupled receptor. Unlike UV-visible spectroscopy, FTIR spectroscopy is structurally sensitive. It may give us both global information about the conformation of the protein and very detailed information about the retinal chromophore and all other functional groups, even when these are not directly related to the chromophore. Furthermore, it can be successfully applied to the photointermediates of rhodopsin, including the active receptor species, metarhodopsin II, and its decay products, which is not expected presently or even in the near future from crystallographic approaches. In this review we show how FTIR spectroscopy has significantly contributed to the understanding of very different aspects of rhodopsin, comprising both structural properties and the mechanisms leading to receptor activation and deactivation.  相似文献   

5.
Bovine rhodopsin photointermediates formed in two-dimensional (2D) rhodopsin crystal suspensions were studied by measuring the time-dependent absorbance changes produced after excitation with 7 ns laser pulses at 15, 25, and 35 degrees C. The crystalline environment favored the Meta I(480) photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 degrees C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I(480) decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 degrees C and quenched to 19 degrees C showed that a rapid equilibrium existed on the approximately 1 s time scale, which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MII(a)) forms in 2D rhodopsin crystals but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of interest.  相似文献   

6.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

7.
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor.  相似文献   

8.
The visual process in rod cells is initiated by absorption of a photon in the rhodopsin retinal chromophore and consequent retinal cis/trans-isomerization. The ring structure of retinal is thought to be needed to transmit the photonic energy into conformational changes culminating in the active metarhodopsin II (Meta II) intermediate. Here, we demonstrate that cis-acyclic retinals, lacking four carbon atoms of the ring, can activate rhodopsin. Detailed analysis of the activation pathway showed that, although the photoproduct pathway is more complex, Meta II formed with almost normal kinetics. However, lack of the ring structure resulted in a low amount of Meta II and a fast decay of activity. We conclude that the main role of the ring structure is to maintain the active state, thus specifying a mechanism of activation by a partial agonist of the G protein-coupled receptor rhodopsin.  相似文献   

9.
Furutani Y  Kandori H  Shichida Y 《Biochemistry》2003,42(28):8494-8500
The functional process of rhodopsin is initiated by cis-trans photoisomerization of the retinal chromophore. One of the primary intermediates, bathorhodopsin (Batho), is stable at 77 K, and structural changes in Batho are limited around the chromophore. Then, relaxation of Batho leads to helix opening at the cytoplasmic surface in metarhodopsin II (Meta II), which allows activation of a G protein transducin. Two intermediates, lumirhodopsin (Lumi) and metarhodopsin I (Meta I), appear between Batho and Meta II, and can be stabilized at 200 and 240 K, respectively. A photoaffinity labeling experiment reported that formation of Lumi accompanied flip-over of the beta-ionone ring of the retinal chromophore so that the ring portion was attached to Ala169 of helix IV [Borhan, B., Souto, M. L., Imai, H., Shichida, Y., and Nakanishi, K. (2000) Science 288, 2209-2212]. According to the crystal structure of bovine rhodopsin, the distance between the labeled C3 atom of the chromophore and Ala169 was >15 A [Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science 289, 739-745]. These facts suggest that global protein structural changes such as helix motions take place in Lumi. In the study presented here, Lumi and Meta I are illuminated at 77 K, and protein structural changes are probed by Fourier transform infrared (FTIR) spectroscopy. We found that Lumi can be photoconverted to rhodopsin at 77 K from the IR spectral analysis of the photoproducts of Lumi. In contrast, more complex spectra were obtained for the photoproducts of Meta I at 77 K, implying that the protein structure of Meta I is considerably altered so as not to be reverted to the original state at 77 K. Thus, these photoreaction experiments with Lumi and Meta I at 77 K suggested the presence of global protein structural changes in the process between them. We concluded that the helix motions do not occur at Lumi, but at Meta I, and the flip-over of the beta-ionone ring reported by the photoaffinity labeling takes place through the specific reaction channel without a change in the global structure.  相似文献   

10.
Vogel R  Siebert F  Mathias G  Tavan P  Fan G  Sheves M 《Biochemistry》2003,42(33):9863-9874
Light-induced isomerization of rhodopsin's retinal chromophore to the activating all-trans geometry initializes the formation of the active receptor state, Meta II. In the absence of peripheral regulatory proteins, the activity of Meta II is switched off spontaneously by two independent pathways: either by hydrolysis of the retinal Schiff base and dissociation of the light receptor into apoprotein opsin plus free retinal or by formation of Meta III, an inactive species with intact retinal protonated Schiff base absorbing at 470 nm. By FTIR spectroscopy on rhodopsin reconstituted with isotopically labeled chromophores in combination with quantum mechanical DFT calculations, we show that the deactivating step during formation of Meta III involves a thermal isomerization of the chromophore C[double bond]N, such that the chromophore in Meta III is all-trans-15-syn. This isomerization step is catalyzed by the protein environment and proceeds via Meta I, as suggested by its dependence on pH and on properties of the lipid/detergent environment of the protein. In the long term, Meta III decays likewise to opsin and free retinal by slow hydrolysis of the Schiff base.  相似文献   

11.
The published electron microscope and X-ray structures of rhodopsin have made available a detailed picture of the inactive dark state of rhodopsin. Yet, the photointermediates of rhodopsin that ultimately lead to the activated receptor species still await a similar analysis. Such an analysis first requires the generation and characterization of the photoproducts that can be obtained in crystals of rhodopsin. We therefore studied with Fourier-transform infrared (FTIR) difference spectroscopy the photoproducts in 2D crystals of bovine rhodopsin in a p22(1)2(1) crystal form. The spectra obtained by cryotrapping revealed that in this crystal form the still inactive early intermediates batho, lumi, and meta I are similar to those obtained from rhodopsin in native disk membranes, although the transition from lumi to meta I is shifted to a higher temperature. However, at room temperature, the formation of the active state, meta II, is blocked in the crystalline environment. Instead, an intermediate state is formed that bears some features of meta II but lacks the specific conformational changes required for activity. Despite being unable to activate its cognate G protein, transducin, to a significant extent, this intermediate state is capable of interacting with functional transducin-derived peptides to a limited extent. Therefore, while unable to support formation of rhodopsin's active state meta II, 2D p22(1)2(1) crystals proved to be very suitable for determining 3D structures of its still inactive precursors, batho, lumi, and meta I. In future studies, FTIR spectroscopy may serve as a sensitive assay to screen crystals grown under altered conditions for potential formation of the active state, meta II.  相似文献   

12.
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.  相似文献   

13.
The superfamily of membrane-bound receptors, which function in signal transduction by activating a guanine nucleotide binding protein or G-protein in response to agonist binding, shares a number of structural and mechanistic properties. Among these similarities is downregulation of functional activity via receptor phosphorylation. In this study, the effects of intermediate levels of phosphorylation (greater than or equal to 4 added phosphates per receptor molecule) on receptor conformational equilibria are examined by comparing the photochemical properties of phosphorylated and unphosphorylated rhodopsins which were incorporated separately into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine vesicles. Postflash spectra reflecting the contributions of metarhodopsins I, II, and III (meta I, meta II, and meta III) were obtained from these samples. Deconvolution of appropriate difference spectra allowed a determination of the concentration of the photointermediates of interest. Meta II is the form of photolyzed rhodopsin which binds and activates the visual G-protein (Gt); thus, its relative abundance at equilibrium and temporal stability are important parameters in determining the efficiency of visual signal transduction. The effects of pH and temperature on the meta I in equilibrium with meta II equilibrium constant (Keq) and the rate of decay of meta II to meta III were examined for the reconstituted phosphorylated and unphosphorylated rhodopsin samples. Keq was essentially unaffected by phosphorylation when measured at pH 7.0 and 8.0 and 20 and 37 degrees C. The decay time (lifetime) of meta II----meta III had a value of approximately 4.7 min in both phosphorylated and unphosphorylated samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Disruption of an interhelical salt bridge between the retinal protonated Schiff base linked to H7 and Glu113 on H3 is one of the decisive steps during activation of rhodopsin. Using previously established stabilization strategies, we engineered a stabilized E113Q counterion mutant that converted rhodopsin to a UV-absorbing photoreceptor with deprotonated Schiff base and allowed reconstitution into native-like lipid membranes. Fourier-transform infrared difference spectroscopy reveals a deprotonated Schiff base in the photoproducts of the mutant up to the active state Meta II, the absence of the classical pH-dependent Meta I/Meta II conformational equilibrium in favor of Meta II, and an anticipation of active state features under conditions that stabilize inactive photoproduct states in wildtype rhodopsin. Glu181 on extracellular loop 2, is found to be unable to maintain a counterion function to the Schiff base on the activation pathway of rhodopsin in the absence of the primary counterion, Glu113. The Schiff base becomes protonated in the transition to Meta III. This protonation is, however, not associated with a deactivation of the receptor, in contrast to wildtype rhodopsin. Glu181 is suggested to be the counterion in the Meta III state of the mutant and appears to be capable of stabilizing a protonated Schiff base in Meta III, but not of constraining the receptor in an inactive conformation.  相似文献   

15.
Vogel R  Siebert F  Lüdeke S  Hirshfeld A  Sheves M 《Biochemistry》2005,44(35):11684-11699
Activation of the visual pigment rhodopsin is initiated by isomerization of its retinal chromophore to the all-trans geometry, which drives the conformation of the protein to the active state. We have examined by FTIR spectroscopy the impact of a series of modifications at the ring of retinal on the activation process and on molecular interactions within the binding pocket. Deletion of ring methyl groups at C1 and C5 or replacement of the ring in diethyl or ethyl-methyl acyclic analogues resulted in partial agonists, for which the conformational equilibrium between the Meta I and Meta II photoproduct is shifted from the active Meta II side to the inactive Meta I side. While the Meta II states of these artificial pigments had a conformation similar to those of native Meta II, the Meta I states were different. Modifications on the ring of retinal had a particular impact on the interaction of Glu 122 within the ring-binding pocket and are shown to interfere with the Glu 134-mediated proton uptake during formation of Meta II. We further found, upon partial deletion of ring constituents, a decrease of the entropy change of the transition from Meta I to Meta II by up to 50%, while the concomitant reduction of the enthalpy term was less pronounced. These findings underline the particular importance of the ring and the ring methyl groups and are discussed in a model of receptor activation.  相似文献   

16.
Vertebrate rhodopsin consists of the apoprotein opsin and the chromophore 11-cis-retinal covalently linked via a protonated Schiff base. Upon photoisomerization of the chromophore to all-trans-retinal, the retinylidene linkage hydrolyzes, and all-trans-retinal dissociates from opsin. The pigment is eventually restored by recombining with enzymatically produced 11-cis-retinal. All-trans-retinal release occurs in parallel with decay of the active form, metarhodopsin (Meta) II, in which the original Schiff base is intact but deprotonated. The intermediates formed during Meta II decay include Meta III, with the original Schiff base reprotonated, and Meta III-like pseudo-photoproducts. Using an intrinsic fluorescence assay, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, we investigated Meta II decay in native rod disk membranes. Up to 40% of Meta III is formed without changes in the intrinsic Trp fluorescence and thus without all-trans-retinal release. NADPH, a cofactor for the reduction of all-trans-retinal to all-trans-retinol, does not accelerate Meta II decay nor does it change the amount of Meta III formed. However, Meta III can be photoconverted back to the Meta II signaling state. The data are described by two quasi-irreversible pathways, leading in parallel into Meta III or into release of all-trans-retinal. Therefore, Meta III could be a form of rhodopsin that is stored away, thus regulating photoreceptor regeneration.  相似文献   

17.
Vogel R  Siebert F  Zhang XY  Fan G  Sheves M 《Biochemistry》2004,43(29):9457-9466
Thermal isomerization of the retinal Schiff base C=N double bond is known to trigger the decay of rhodopsin's Meta I/Meta II photoproduct equilibrium to the inactive Meta III state [Vogel, R., Siebert, F., Mathias, G., Tavan, P., Fan, G., and Sheves, M. (2003) Biochemistry 42, 9863-9874]. Previous studies have indicated that the transition to Meta III does not occur under conditions that strongly favor the active state Meta II but requires a residual amount of Meta I in the initial photoproduct equilibrium. In this study we show that the triggering event, the thermal isomerization of the protonated Schiff base, is independent of the presence of Meta II and occurs even under conditions where the transition to Meta II is completely prevented. We have examined two examples in which the transitions from Lumi to Meta I or from Meta I to Meta II are blocked. This was achieved using dry films of rhodopsin and rhodopsin reconstituted into rather rigid lipid bilayers. In both cases, the resulting fully inactive room temperature photoproducts decay specifically by thermal isomerization of the protonated Schiff base C=N double bond to an all-trans 15-syn chromophore isomer, corresponding to that of Meta III. This thermal isomerization becomes less efficient as the conformation of the respective photoproduct approaches that of Meta II and is fully absent in a pure Meta II state. These results indicate that the decay of the Meta I/Meta II photoproduct equilibrium to Meta III proceeds via Meta I and not via Meta II.  相似文献   

18.
Membrane proteins often require solubilization to study their structure or define the mechanisms underlying their function. In this study, the functional properties of the membrane protein rhodopsin in its native lipid environment were investigated after being solubilized with styrene-maleic acid (SMA) copolymer. The static absorption spectra of rhodopsin before and after the addition of SMA were recorded at room temperature to quantify the amount of membrane protein solubilized. The samples were then photobleached to analyze the functionality of rhodopsin upon solubilization. Samples with low or high SMA/rhodopsin ratios were compared to find a threshold in which the maximal amount of active rhodopsin was solubilized from membrane suspensions. Interestingly, whereas the highest SMA/rhodopsin ratios yielded the most solubilized rhodopsin, the rhodopsin produced under these conditions could not reach the active (Meta II) state upon photoactivation. The results confirm that SMA is a useful tool for membrane protein research, but SMA added in excess can interfere with the dynamics of protein activation.  相似文献   

19.
The retinal receptor rhodopsin undergoes a conformational change upon light excitation to form metarhodopsin II (Meta II), which allows interaction and activation of its cognate G protein, transducin (G(t)). A C-terminal 11-amino acid peptide from transducin, G(talpha)-(340-350), has been shown to both bind and stabilize the Meta II conformation, mimicking heterotrimeric G(t). Using a combinatorial library we identified analogs of G(talpha)-(340-350) that bound light-activated rhodopsin with high affinity (Martin, E. L., Rens-Domiano, S., Schatz, P. J., and Hamm, H. E. (1996) J. Biol. Chem. 271, 361-366). We have made peptides with key substitutions either on the background of the native G(talpha)-(340-350) sequence or on the high affinity sequences and used the stabilization of Meta II as a tool to determine which amino acids are critical in G protein-rhodopsin interaction. Removal of the positive charge at the N termini by acylation or delocalization of the charge by K to R substitution enhances the affinity of the G(talpha)-(340-350) peptides for Meta II, whereas a decrease was observed following C-terminal amidation. Cys-347, a residue conserved in pertussis toxin-sensitive G proteins, was shown to interact with a hydrophobic site in Meta II. These studies provide further insight into the mechanism of interaction between the G(talpha) C terminus and light-activated rhodopsin.  相似文献   

20.
D Pan  R A Mathies 《Biochemistry》2001,40(26):7929-7936
Time-resolved resonance Raman microchip flow experiments have been performed on the lumirhodopsin (Lumi) and metarhodopsin I (Meta I) photointermediates of rhodopsin at room temperature to elucidate the structure of the chromophore in each species as well as changes in protein-chromophore interactions. Transient Raman spectra of Lumi and Meta I with delay times of 16 micros and 1 ms, respectively, are obtained by using a microprobe system to focus displaced pump and probe laser beams in a microfabricated flow channel and to detect the scattering. The fingerprint modes of both species are very similar and characteristic of an all-trans chromophore. Lumi exhibits a relatively normal hydrogen-out-of-plane (HOOP) doublet at 951/959 cm(-1), while Meta I has a single HOOP band at 957 cm(-1). These results suggest that the transitions from bathorhodopsin to Lumi and Meta I involve a relaxation of the chromophore to a more planar all-trans conformation and the elimination of the structural perturbation that uncouples the 11H and 12H wags in bathorhodopsin. Surprisingly, the protonated Schiff base C=N stretching mode in Lumi (1638 cm(-1)) is unusually low compared to those in rhodopsin and bathorhodopsin, and the C=ND stretching mode shifts down by only 7 cm(-1) in D2O buffer. This indicates that the Schiff base hydrogen bonding is dramatically weakened in the bathorhodopsin to Lumi transition. However, the C=N stretching mode in Meta I is found at 1654 cm(-1) and exhibits a normal deuteration-induced downshift of 24 cm(-1), identical to that of the all-trans protonated Schiff base. The structural relaxation of the chromophore-protein complex in the bathorhodopsin to Lumi transition thus appears to drive the Schiff base group out of its hydrogen-bonded environment near Glu113, and the hydrogen bonding recovers to a normal solvated PSB value but presumably a different hydrogen bond acceptor with the formation of Meta I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号