首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD-malic enzyme (NAD-ME) functions to decarboxylate malatein the light in leaves of certain species displaying Crassulaceanacid metabolism (CAM). The properties of NAD-ME in desaltedextracts from the inducible CAM species, Mesembryanthemum crystallinumwere examined. The shapes of the malate saturation curve andthe activity versus pH curve at 10 mM malate were dependenton the presence of the activator CoA. The malate saturationcurve was sigmoidal in the absence of an activator and hyperbolicin the presence of CoA. The pH optimum with 10mM malate andMn2+ as cofactor was as low as 6.5 without an activator, andincreased to 7.2 in the presence of CoA. Fumarate activationwas synergistic with CoA above pH 7.2. The enzyme displayedhysteretic behavior under suboptimal assay conditions. Rapid extraction and desalting of the enzyme (<1.5 mim) followedimmediately by assay did not reveal any difference in the propertiesof the enzyme on a day/night basis. It is proposed that diurnalregulation of the enzyme in vivo is mediated by pH and malatelevel without a change in the oligomeric form of the enzyme.The molecular weight of the enzyme was approximately 350,000at pH 6.5 or 7.8. The enzyme obtained from M. crystallinum inthe C3 mode was very similar to the CAM enzyme except that itdisplayed a lower Vmax. 3 Current address: MSU-DOE Plant Research Lab, Michigan StateUniversity, E. Lansing, Michigan, U.S.A. 48824. (Received October 2, 1984; Accepted December 20, 1984)  相似文献   

2.
Expanded leaves of Mesembryanthemum crystallinum L. performingC3 photosynthesis were induced to perform pronounced Crassulaceanacid metabolism (CAM) by exposing the plant roots to higherNaCl concentration. Levels of phosphoenolpyruvate (PEP) carboxylaseactivity increased 10-fold during the 7-day induction period.Densitometric analysis of Coomassie-stained sodium dodecyl sulfate(SDS) polyacrylamide gradient slab gels of leaf extracts, preparedduring the course of CAM induction, revealed that at least fivebands of polypeptides increased in content (kilodalton valuesof 98, 91, 45, 41, 38). Higher levels of three additional polypeptides(kilodalton values of 102, 76, 33) became apparent after tissuehad been grown for 2 weeks at 400 mM NaCl. Of these polypeptides,that having a mass of 98 kilodaltons was identified as the subunitof PEP carboxylase by comparison with the corresponding bandfrom partially purified PEP carboxylase from the same tissue.Only a faint 98 kilodalton band was evident on SDS gels fortissue operating in the C3 mode; staining intensity at thislocation increased with increasing NaCl-salinity in the rootingmedium until CAM was fully induced. These data provide evidencefor net synthesis of PEP carboxylase and several other proteinsduring the induction of CAM in M. crystallinum. 1 Present address: USDA, P. O. Box 867 Airport Rd., Beckley,WV. 25801, U.S.A. 2 Present address: Department of Botany, Washington State University,Pullman, Washington 99164, U.S.A. 3 Present address: Botanisches Institut der Universit?t, MittlererDallenbergweg 64, 8700 W?rzburg, W.-Germany. (Received October 27, 1981; Accepted March 15, 1982)  相似文献   

3.
Conditions and maintenance of growth were chosen so that plantsof Clusia minor L. were obtained which showed the C3- and CAM-modes of CO2-exchange, respectively. C. minor is known to accumulateconsiderable amounts of citric acid in addition to malic acidduring the dark-phase of CAM. 14CO2-pulse-chase experiments were performed with these plants.Patterns of labelling during the pulse and redistribution oflabel during the chase in the C3-mode were as expected for C3-photosynthesis.Pulse-labelling in the CAM-mode during the last hour of thelight period, during the first part of the dark period and duringthe last hour of the dark period always led to an almost exclusiveincorporation of label into malate. Redistribution of labelfrom malate after the pulse at the end of the dark period duringthe chase in the subsequent light period followed the patternexpected for light-dependent reassimilation of CO2 remobilizedfrom malate in CAM during the light period. During the chasesin the dark period, label was transferred from l4C-malate tocitrate. This suggests that during accumulation of citric acidin the dark period of CAM in C. minor, citrate is synthesizedin the mitochondria from malate or oxaloacetate after formationof malate via phosphoenolpyruvate carboxylase. The experiment also showed that no labelled compounds are exportedfrom leaves in the CAM-mode during the dark period. In plantsof the C3-mode the roots proved to be strong sinks. Key words: Clusia minor, labelling, pulse-chase, 14CO2  相似文献   

4.
A remarkable difference was found in the survival of leavesof Mesembryanthemum crystallinum with plants grown in the C3versus the CAM mode. With excised leaves (petiole in solution)of C3-mode plants subjected to 6 days of darkness, there wasa large reduction in the chlorophyll content of the leaf andleaf turgor had decreased. By day 9, the chlorophyll had disappeared,except at the major veins, and the leaf tip had dried and turnedbrown. In contrast, the leaf tissue in the CAM mode showed onlya partial loss of chlorophyll during the same period, and evenafter 17 days of darkness, the tissue at the base was stillalive. Similarly, intact plants grown in the C3 mode deterioratedmuch faster during 20 days of darkness than did plants grownin the CAM mode. Chlorophyll content, chlorophyll a/b ratio,phosphoenolpyruvate carboxylase, NADP-malic enzyme, malate andstarch content were measured. In both C3- and CAM-mode plants,the starch content decreased rapidly during the dark periodand was nearly depleted after two days. In the CAM-mode tissue,there was a relatively high level of malate during prolongeddarkness (up to 17 days), with a transitory rise early in thedark period. In contrast, the malate content was low and rapidlydepleted in the C3-mode leaves kept in darkness. These findingssuggest that malate may be an important source of carbon forsustaining leaves of CAM-mode M. crystallinum during prolongeddarkness. (Received May 20, 1987; Accepted October 23, 1987)  相似文献   

5.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

6.
Using butyl-TSK-gel chromatography, we purified NAD-malic enzyme(ME) (EC 1.1.1.39 [EC] ), which is involved in C4 photosynthesis,to electrophoretic homogeneity, from leaves of Amaran-thus tricolor.Molecular weights of the native and SDS-denatured enzyme fromA. tricolor were 490 kDa and 61 kDa, respectively. During assayof the enzyme there was a slow reaction transient in the formof a lag before a steady-state rate was reached. The durationof this lag was inversely proportional to the concentrationof each substrate and the activator, fructose- 1,6-bis-phosphate(FBP). The optimal pH of the reaction fell with decreasing concentrationsof either malate or FBP. High pH prolonged the lag in reaction. Double reciprocal plots of the enzymatic activity as a functionof the concentration of malate yielded straight lines and didnot show any cooperativity for binding of malate. The enzymefrom A. tricolor was not inhibited by either HCO3 orCO2. At different concentrations of malate, the nature of theactivating effect of FBP was compared among the purified enzymesfrom A. tricolor and the C4 monocots Eleusine coracana and Panicumdichotomiflorum. At low levels of malate, FBP markedly stimulatedthe enzyme from each species. In contrast, at saturating levelsof malate, the response of enzymes to increasing concentrationsof FBP was different and depended on the source of enzyme. The immunochemical properties of the enzymes from the threespecies were compared using an enzyme-linked immunoadsorbentassay with antisera raised against the purified enzymes fromthe three species. Different cross-reactivities were observedamong the enzymes from different sources. The N-terminal aminoacid sequences of NAD-MEs from the three species were determinedand some differences were found among the three enzymes. 2Permanent address; Tohoku National Agricultural ExperimentStation, Morioka, 020-01 Japan. 3Permanent address; National Grassland Research Institute, Nishinasuno,Tochigi, 329-27 Japan. (Received December 12, 1988; Accepted February 17, 1989)  相似文献   

7.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

8.
Pinitol, a Compatible Solute in Mesembryanthemum crystallinum L.?   总被引:5,自引:0,他引:5  
The irrigation of Mesembryanthemum crystallinum L. plants with400 mol m–3 NaCl to induce crassulacean acid metabolism(CAM) was accompanied by the accumulation of pinitol. Pinitolconstituted 71% of the soluble carbohydrate fraction and 9.7%dry weight in the CAM form. Pinitol in the C3 form did not exceed5% of the soluble carbohydrate fraction. Pinitol appeared metabolicallyinert: it was not readily degraded during 96 h of darkness inthe CAM form or during CAM deinduction. Preparations of CAMM. crystallinum protoplasts, vacuoles and chloroplasts showedpinitol to be chloroplastic at a concentration of about 230mol m–3 and cytosolic at about 100 mol m–3. No pinitolwas detected in vacuoles. CAM leaf extracts possessed a highermyo-inositol phosphate synthesising capacity than C3 extracts,revealing greater activity in the CAM form of glucose-6-phosphatecycloaldolase, an enzyme in the pathway of pinitol synthesis. Although pinitol accumulation and CAM induction could not beseparated and appeared to be specific responses to water stress,there may not be a causal link between them. Pinitol may functionas a compatible solute in the cytosol and especially the chloroplaststo counteract the presence of high concentrations of Na+ andCl ions in the vacuole. The accumulation of pinitol,though apparently not directly related to CAM may, like CAM,be viewed as an aspect of the adaptation of the plant to a reductionin water availability. Key words: pinitol, Mesembryanthemum crystallinum L, CAM, compatible solute  相似文献   

9.
The pattern for primary products of CO2-fixation and the chloroplaststructure of Amaranthus retrqflexus L., a species which incorporatescarbon dioxide into C4 dicarboxylic acids as the primary productof photosynthesis, were compared in various chlorophyll containingtissues,i.e., foliage leaves, stems, cotyledons and pale-greencallus induced from stem pith. Despite some morphological differencesin these assimilatory tissues, malate and aspartate were identifiedas the major compounds labelled during a 10 sec fixation of14CO2 in all tissues. Whereas, aspartate was the major componentin C4-dicarboxylic acids formed in foliage leaves, malate predominatedas the primary product in stems, cotyledons and the pale-greencallus. The percentage of 14C-radioactivity incorporated intoPGA and sugar-P esters increased and 14C-sucrose was detectedin the prolonged fixation of 14CO2 in the light, not only infoliage leaves, but also in stems and cotyledons. 1 This work was supported by a Grant for Scientific ResearchNo. 58813, from the Ministry of Education, Japan. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo, Japan. 3 Present address: Department of Biochemistry, University ofGeorgia, Athens 30601. Georgia, U. S. A. (Received July 10, 1971; )  相似文献   

10.
Both malate and aspartate were decarboxylated at the 4-carbonposition by isolated bundle sheath strands of C4 plants butto different extents depending upon the species. In Digitariasanguinalis, an NADP-malic enzyme (NADP-ME) species, 100 µMoxalic acid blocked malate decarboxylation through NADP-ME withoutaffecting aspartate decarboxylation which apparently occursthrough NAD-ME. In several phosphoenolpyruvate carboxykinase(PEP-CK) type C4 species, 200 µM 3-mercaptopicolinic acid(3-MPA), an inhibitor of PEP-CK, specifically inhibited themalate decarboxylation and partially inhibited aspartate decarboxylation.The aspartate decarboxylation insensitive to 3-MPA may occurthrough NAD-ME. Neither inhibitor prevented C4 acid decarboxylationin bundle sheath cells of NAD-ME species. The inhibitors thusserved to differentiate between the decarboxylation of C4 acidsin PEP-CK and NADP-ME type C4 species through their major decarboxylasefrom that of their less active decarboxylation through NAD-ME. 1 Present address: Department of Biochemistry and Microbiology,Rutgers University, New Brunswick, NJ 08903, U. S. A. (Received January 28, 1977; )  相似文献   

11.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

12.
Guard cell and mesophyll cell protoplasts of Commelina communisL., were isolated and used to investigate their various biochemicalcharacteristics. Contamination of the samples by other celltypes was very low and viability of the protoplasts, assessedby the use of neutral red, Evans blue and fluorescein diacetate,was high (89–98%). Mesophyll cell protoplasts containedmore chlorophyll (x 47), more soluble protein (x 10), more totalN (x 36) and more DNA (x 9) than guard cell protoplasts. Theabsorption spectra of protoplast extracts were similar for bothcell types except that below 400 nm there was a large increasein absorption by the guard cell protoplast extract. In guardcell protoplast extracts, high levels of activity of phosphoenolpyruvatecarboxylase (E.C. 4.1.1.31 [EC] ), NAD malate dehydrogenase (E.C.1.1,1.37), NADP malic enzyme (E.C. 1.1.1.40 [EC] ) and carbonic anhydrase(E.C. 4.2.1.1 [EC] ) were detected while only low levels of pyruvate-orthophosphatedikinase (E.C. 2.7.9.1 [EC] ) activity were detected. Glycollate oxidase(E.C. 1.1.3.1 [EC] ), ribulose-l,5-bisphosphate carboxylase (E.C 4.1.1.39 [EC] ),NADP malate dehydrogenase (E.C. 1.1.1.82 [EC] ) and NAD malic enzyme(E.C. 1.1.1.39 [EC] ) were not detected in guard cell protoplast extracts.High levels of ribulose-1, 5-bisphosphate carboxylase, glycollateoxidase, NAD malate dehydrogenase and carbonic anhydrase weredetected in mesophyll cell protoplast extracts which is typicalof C3 plants. A pathway of carbon flow during stomatal openingand closing is proposed. Key words: Carbon metabolism, Commelina communis, guard cell protoplasts, mesophyll cell protoplasts, stomata  相似文献   

13.
Three isoforms (Types 1, 2 and 3) of phosphoenolpyruvate (PEP)carboxylase in young leaves of the Crassulacean acid metabolism(CAM) plant Kalanchoe daigremontiana were separated by DEAE-cellulosecolumn chromatography and preparative polyacrylamide-agarosegel electrophoresis, and their enzymatic properties were characterized. All three isoforms had similar molecular weights of about 234,000.At pH 8.0 Type 1 showed a high affinity to PEP, (Km=0.08 mM),whereas Type 3 showed a low affinity (Km=1.0mM). Km values forMgCl2 were 0.26 HIM in Types 1 and 3 and 0.5 nut in Type 2.All three types exhibited the same pH optimum at 8.0, but Type1 showed relatively low activity below pH 6.0, whereas Type3 showed high activity. Type 3 was more acid stable than theother forms. In the presence of glucose-6-phosphate, the Kmvalues of Types 1, 2 and 3 for PEP lowered to 0.027, 0.037 and0.044 mu at pH 8.0, respectively. Inhibition of activity byorganic acids such as malate and pyruvate was pronounced inType 3. Type 2 exhibited properties intermediate to Types 1and 3 with regard to pH curve, affinity to PEP and its effectof various metabolites. The physiological significance of PEPcarboxylase isoforms in CAM plants is discussed on the basisof these findings. 1Present address: Agricultural Chemicals Research Lab., SankyoCo., Ltd., Yasu-cho, Yasugun, Shiga 520-23, Japan. (Received November 30, 1983; Accepted March 24, 1984)  相似文献   

14.
To study possible changes in the transport metabolites betweenchloroplasts and cytoplasm during CAM induction of Mesembryanthemumcrystallinum, we compared substrate specificity of P11 translocator(s)in isolated chloroplasts from the C3 and CAM-induced plants.The [14C]glu-cose 6-phosphate (G6P) transport activity was significantonly in the chloroplasts of CAM-mode plants and not detectablein those of C3-mode, while a similar high rate of [32P]Pi uptakewas observed with both types of chloroplasts. Kinetic analysisof G6P uptake in the CAM chloroplasts showed a high Vmax [10.6µmol (mg Chl)–1 h–1] and a comparatively lowKm value (0.41 mM); the latter was similar to Ki values of Pi,3-phosphoglycerate and phospho-enolpyruvate, 0.30, 0.34 and0.47 mM, respectively. On the other hand, [32P]Pi uptake inthe CAM chloroplasts was inhibited competitively by G6P witha Ki value (8.4 mM) 20-fold higher than the Km value for G6Puptake, while that in C3 chloroplasts was not inhibited at all.These results suggest that a new G6P/Pi, counterexchange mechanismis induced in the chloroplast envelope of CAM-induced M. crystallinumin addition to the ordinary type of P, translocator, that cannottransport G6P, already present in the C3-type chloroplasts. (Received March 17, 1997; Accepted May 10, 1997)  相似文献   

15.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

16.
A full-length cDNA for maize root-form phosphoenolpyruvate carboxylase(PEPC) was isolated. In the coding region, the root-form PEPCshowed 76 and 77% identity with the C4- and C3-form PEPCs ofmaize, respectively, at the nucleotide level. At the amino acidlevel, the root-form was 81 and 85% identical to the C4- andC3-form PEPCs, respectively. The entire coding region was insertedinto a pET32a expression vector so that it was expressed underthe control of T7 promoter. The purified recombinant root-formPEPC had a Vmax value of about 28 mol min–1(mg protein)1at pH 8.0. The Km values of root-form PEPC for PEP and Mg2+were one-tenth or less of those of C4-form PEPC when assayedat either pH 7.3 or 8.0, while the value for HCO3 wasabout one-half of that of C4-form PEPC at pH 8.0. Glucose 6-phosphateand glycine had little effect on the root-form PEPC at pH 7.3;they caused two-fold activation of the C4-form PEPC. The Ki(L-malate) values at pH 7.3 were 0.12 and 0.43 raM for the root-and C4-form PEPCs, respectively. Comparison of hydropathy profilesamong the maize PEPC isoforms suggested that several stretchesof amino acid sequences may contribute in some way to theircharacteristic kinetic properties. The root-form PEPC was phosphorylatedby both mammalian cAMP-dependent protein kinase and maize leafprotein kinase, and the phosphorylated enzyme was less sensitiveto L-malate. 1These authors contributed equally to this work. 2Present address: Otsuka Chemical Co. Ltd., 463 Kagasuno, Kawauchi-cho,Tokushima, 771-0130 Japan. 3Present address: Sumitomo Pharmaceuticals Research Center,1-98, Kasugade, Naka 3-cho-me, Konohana-ku, Osaka, 554-0022Japan.  相似文献   

17.
Lee, H. S. J. and Griffiths, H. 1987. Induction and repressionof CAM in Sedurn relephluni L. in response to photopcnod andwater stress.—J. exp. Bot. 38: 834–841. The introduction and repression of CAM in Sedurn telephiunmL, a temperate succulent, was investigated in watered, progressivelydrouglited and rewatered plants in growth chambers. Measurementswere made of water vapour and CO2 exchange, titratable acidity(TA) and xylem sap tension. Effects of photoperiod were alsostudied. CAM was induced by drought under long or short days,although when watered no CAM activity was expressed. C3-CAM intermediate plants were used for the investigation ofwater supply. Those which had received water and those drought-stressedboth displayed a similar nocturnal increase in TA, with a day-nightmaximum (H+) of 69 µmol g–1 fr. wt. The wateredplants took up CO2 at a maximum rate of 2?2 µmol m–2s–1 only in the light period, while the droughted plantsshowed a maximum nocturnal CO2 uptake rate of 0?69 µmolm–2 s–1. Subsequently, as CAM was repressed, thewatered S. telephiwn displayed little variation in TA, withconstant levels at 42 µmol g–1 fr. wt. (day 10).After 10 d of drought stress, the CAM characteristics of S.telephiurn were aLso affected, with reduced net CO2 uptake andH+. The transition between C3 and CAM in S. telephium can be describedas a progression in terms of the proportion of respiratory CO2which is recycled and refixed at night as malic acid, in comparisonwith net CO2 uptake. Recycling increased from 20% (day 1) to44% (day 10) as a result of the drought stress and was highin both the CAM-C3 stage (no net CO2 uptake at night) and alsoin the drought-stressed CAM stage (reduced net CO2 uptake atnight). The complete C3-CAM transition occurred in less than8 d, and the stages could be characterized by xylem sap tensionmeasurements: CAM = 0?50 MPa C3-CAM = 0?36 MPa C3 = 0?29 MPa. Key words: CAM, Sedum telephium L., recycling  相似文献   

18.
Chloroplast envelopes were isolated from chloroplasts purifiedfrom Spinacea oleracea L. (C3), Panicum miliaceum L. (NAD-malicenzyme-type C1), Digitaria sanguinalis (L.) Scop. (NADP-malicenzyme-type C4), Kalanchoe daigremontiana Hamet et Perrier (constitutiveCAM), and from Mesembryanthemum crystallinum L. (inducible CAM)performing either C3 photosynthesis or Crassulacean acid metabolism(CAM). For each species, methods were developed to isolate chloroplastenvelopes free of thylakoid contamination. The polypeptidesof ribulose bisphosphate (RuBP) carboxylase which has been consistentlyreported in envelope preparations of spinach were not foundin envelope preparations of C4 mesophyll chloroplasts. Silverstaining of envelope polypeptides resolved electrophoreticallyon sodium dodecylsulfate polyacrylamide gradient slab gels produceda more complex profile than did Coomassie staining which haspreviously been used with C3 envelope preparations, even thoughsilver reacted poorly with polypeptides corresponding to thesubunits of RuBP carboxylase. All of the plants examined possesseda major polypeptide of 27 to 29 kilodaltons (kD) which was previouslysuggested to be the phosphate translocator in spinach. WithC3 M. crystallinum, the 29 kD polypeptide stained most intensely.After induction of CAM, a 32 kD polypeptide also stained intensely,giving a profile similar to that obtained with the constitutiveCAM species. A 32 kD polypeptide was also prominent in C4 envelopepreparations, suggesting that a 32 kD polypeptide may be a translocatorprotein which is required in Crassulacean acid metabolism andC4 photosynthesis, but not in C3 photosynthesis. (Received April 25, 1983; Accepted July 9, 1983)  相似文献   

19.
  1. In the presence of NADP+ and Mg++, the bundle sheath strandsisolated from corn (Zea mays) leaves by cellulase treatmentsdecarboxylated malate in the light at an initial rate (200 µmoles/mgchl.hr), which was sufficient to account for photosyntheticCO2 fixation in intact leaves. This rate gradually slowed downand then stopped. The final level of the malate decarboxylatedwas approximately equal to the amount of NADP+ added.
  2. Rapidand continued decarboxylation of malate was observed whenNADP+,3-phosphoglyceric acid and ATP (and Mg++) were addedtogether.The addition of ADP instead of ATP showed a similareffect.Light did not show any effect on the malate decarboxylationin the presence of ATP or ADP.
  3. When malate was added to thebundle sheath strands in the presenceof exogenous NADP+ NADP+was rapidly reduced. The reductionstopped after 2 min when,73% of the added NADP+ was reduced.The further addition of3-phosphoglyceric acid and ATP broughtabout a decrease in theNADPH-level, which rose again to attaina new steady level.
  4. The transfer of radioactivity from (1-14C-3-phosphoglycericacid to dihydroxyacetone phosphate in the bundle sheath strandsin the presence of ATP and NADP+ was greatly enhanced by theaddition of malate.
  5. In the presence of ribose 5-phosphateand ATP, the rate of 14C-transferfrom (4-14C)-malate to theintermediates of the reductive pentosephosphate cycle was equalto that of 14CO2 fixation in the light.
All these results support the current view that in the bundlesheath cells of C4 plants belonging to the NADP-malic enzyme-group,the decarboxylation of malate is coupled to the fixation ofthe released CO2 and the reduction of 3-phosphoglyceric acidformed as a result of CO2 fixation. 1 Part of this research was reported at the 40th Annual Meetingof the Botanical Society of Japan Osaka, December, 1975. 3 Present address: Laboratory of Chemistry, Faculty of Medicine,Teikyo University, 359 Otsuka, Hachioji-City, Tokyo 173, Japan. (Received April 30, 1977; )  相似文献   

20.
Proline accumulation was determined in a facultative halophyte,Mesembryanthemum crystallinum and glycophytes, barley (Hordeumvulgare L.) and wheat (Triticum aestivum L.) Proline accumulationpreceded the shift of CAM in M. crystallinum and did not occurin the continuous darkness. The novel light-dark change of prolinelevel (high in the light and low in the dark) was observed inleaves of all three plants. Proline levels of shoots in barleyand wheat also showed the same light-dark change, suggestingthat proline accumulated in the leaves in the light was nottranslocated to other tissues in the dark period. These resultssuggest that proline has a bifunctional role in the acclimationto high salt stress; an osmoregulant role in the light, anda substrate for dark respiration to supply energy to compartmentationof ions into vacuole in the dark. 1Present address: Kyoto Biological Res. Lab., Bio-Chiba Inc.Watsuka,Soraku, Kyoto, 619-12 Japan 2Present address: Kobayashi Pharmaceutical Co., Ltd. Doshomachi,Chuo-ku, Osaka, 541 Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号