首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SNF2 and SNF5 genes are required for derepression of SUC2 and other glucose-repressible genes of Saccharomyces cerevisiae in response to glucose deprivation. Previous genetic evidence suggested that SNF2 and SNF5 have functionally related roles. We cloned both genes by complementation and showed that the cloned DNA was tightly linked to the corresponding chromosomal locus. Both genes in multiple copy complemented only the cognate snf mutation. The SNF2 gene encodes a 5.7-kilobase RNA, and the SNF5 gene encodes a 3-kilobase RNA. Both RNAs contained poly(A) and were present in low abundance. Neither was regulated by glucose repression, and the level of SNF2 RNA was not dependent on SNF5 function or vice versa. Disruption of either gene at its chromosomal locus still allowed low-level derepression of secreted invertase activity, suggesting that these genes are required for high-level expression but are not directly involved in regulation. Further evidence was the finding that snf2 and snf5 mutants failed to derepress acid phosphatase, which is not regulated by glucose repression. The SNF2 and SNF5 functions were required for derepression of SUC2 mRNA.  相似文献   

2.
The SNF3 gene of Saccharomyces cerevisiae encodes a high-affinity glucose transporter that is homologous to mammalian glucose transporters. To identify genes that are functionally related to SNF3, we selected for suppressors that remedy the growth defect of snf3 mutants on low concentrations of glucose or fructose. We recovered 38 recessive mutations that fall into a single complementation group, designated rgt1 (restores glucose transport). The rgt1 mutations suppress a snf3 null mutation and are not linked to snf3. A naturally occurring rgt1 allele was identified in a laboratory strain. We also selected five dominant suppressors. At least two are tightly linked to one another and are designated RGT2. The RGT2 locus was mapped 38 cM from SNF3 on chromosome IV. Kinetic analysis of glucose uptake showed that the rgt1 and RGT2 suppressors restore glucose-repressible high-affinity glucose transport in a snf3 mutant. These mutations identify genes that may regulate or encode additional glucose transport proteins.  相似文献   

3.
The SNF1 gene product of Saccharomyces cerevisiae is required to derepress expression of many glucose-repressible genes, including the SUC2 structural gene for invertase. Strains carrying a recessive snf1 mutation are unable to ferment sucrose. We have isolated 30 partial phenotypic revertants of a snf1 mutant that were able to ferment sucrose. Genetic characterization of these revertants showed that the suppressor mutations were all recessive and defined eight complementation groups, designated ssn1 through ssn8 (suppressor of snf1 ). The revertants were assayed for secreted invertase activity, and although activity was detected in members of each complementation group, only the ssn6 strains contained wild-type levels. Synthesis of secreted invertase in ssn6 strains was found to be constitutive, that is, insensitive to glucose repression; moreover, the ssn6 mutations also conferred constitutivity in a wild-type ( SNF1 ) genetic background and are, therefore, not merely suppressors of snf1 . Pleiotropic defects were observed in ssn6 mutants. Genetic analysis suggested that the ssn6 mutations are allelic to the cyc8 mutation isolated by R. J. Rothstein and F. Sherman, which causes increased production of iso-2-cytochrome c. The data suggest a regulatory function for SSN6 .  相似文献   

4.
Mutants of Saccharomyces cerevisiae with defects in sucrose or raffinose fermentation were isolated. In addition to mutations in the SUC2 structural gene for invertase, we recovered 18 recessive mutations that affected the regulation of invertase synthesis by glucose repression. These mutations included five new snf1 (sucrose nonfermenting) alleles and also defined five new complementation groups, designated snf2, snf3, snf4, snf5, and snf6. The snf2, snf4, and snf5 mutants produced little or no secreted invertase under derepressing conditions and were pleiotropically defective in galactose and glycerol utilization, which are both regulated by glucose repression. The snf6 mutant produced low levels of secreted invertase under derepressing conditions, and no pleiotropy was detected. The snf3 mutants derepressed secreted invertase to 10-35% the wild-type level but grew less well on sucrose than expected from their invertase activity; in addition, snf3 mutants synthesized some invertase under glucose-repressing conditions.--We examined the interactions between the different snf mutations and ssn6, a mutation causing constitutive (glucose-insensitive) high-level invertase synthesis that was previously isolated as a suppressor of snf1. The ssn6 mutation completely suppressed the defects in derepression of invertase conferred by snf1, snf3, snf4 and snf6, and each double mutant showed the constitutivity for invertase typical of ssn6 single mutants. In contrast, snf2 ssn6 and snf5 ssn6 strains produced only moderate levels of invertase under derepressing conditions and very low levels under repressing conditions. These findings suggest roles for the SNF1 through SNF6 and SSN6 genes in the regulation of SUC2 gene expression by glucose repression.  相似文献   

5.
Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a snf2 mutant that are able to derepress secreted invertase. These revertants all carried suppressor mutations at a single locus, designated SSN20 (suppressor of snf2). Alleles with dominant, partially dominant and recessive suppressor phenotypes were recovered, but all were only partial suppressors of snf2, reversing the defect in invertase synthesis but not other defects. All alleles also caused recessive, temperature-sensitive lethality and a recessive defect in galactose utilization, regardless of the SNF2 genotype. No significant effect on SUC2 expression was detected in a wild-type (SNF2) genetic background. The ssn20 mutations also suppressed the defects in invertase derepression caused by snf5 and snf6 mutations, and selection for invertase-producing revertants of snf5 mutants yielded only additional ssn20 alleles. These findings suggest that the roles of the SNF2, SNF5 and SNF6 genes in regulation of SUC2 are functionally related and that SSN20 plays a role in expression of a variety of yeast genes.  相似文献   

6.
Glucose uptake mutants have not been previously obtained in Saccharomyces cerevisiae, possibly because there seem to be at least two transport systems, of low and high affinities. We showed that snf3 (sucrose nonfermenting) mutants did not express high-affinity glucose uptake. Furthermore, their growth was completely impaired on low concentrations of glucose in the presence of antimycin A (which blocks respiration). Several genes which complemented the original snf3 gene were obtained on multicopy plasmids. Some of them, as well as plasmid-carried SNF3 itself, conferred a substantial increase in high-affinity glucose uptake in both snf3 and wild-type hosts. The effects of glucose on the expression of such a plasmid-determined high-affinity uptake resembled those in the wild type. Other genes complementing snf3 seemed to cause an increase in low-affinity glucose uptake. We suggest that SNF3 may function specifically in high-affinity glucose uptake, which is needed under some conditions of growth on low glucose concentrations. SNF3 itself or the other complementing genes may specify components of the glucose uptake system.  相似文献   

7.
A functional SNF1 gene product is required to derepress expression of many glucose-repressible genes in Saccharomyces cerevisiae. Strains carrying a snf1 mutation are unable to grow on sucrose, galactose, maltose, melibiose, or nonfermentable carbon sources; utilization of these carbon sources is regulated by glucose repression. The inability of snf1 mutants to utilize sucrose results from failure to derepress expression of the structural gene for invertase at the RNA level. We isolated recombinant plasmids carrying the SNF1 gene by complementation of the snf1 defect in S. cerevisiae. A 3.5-kilobase region is common to the DNA segments cloned in five different plasmids. Transformation of S. cerevisiae with an integrating vector carrying a segment of the cloned DNA resulted in integration of the plasmid at the SNF1 locus. This result indicates that the cloned DNA is homologous to sequences at the SNF1 locus. By mapping a plasmid marker linked to SNF1 in this transformant, we showed that the SNF1 gene is located on chromosome IV. We then mapped snf1 to a position 5.6 centimorgans distal to rna3 on the right arm; snf1 is not extremely closely linked to any previously mapped mutation.  相似文献   

8.
Missense mutations in the SNF3 gene of Saccharomyces cerevisiae were previously found to cause defects in both glucose repression and derepression of the SUC2 (invertase) gene. In addition, the growth properties of snf3 mutants suggested that they were defective in uptake of glucose and fructose. We have cloned the SNF3 gene by complementation and demonstrated linkage of the cloned DNA to the chromosomal SNF3 locus. The gene encodes a 3-kilobase poly(A)-containing RNA, which was fivefold more abundant in cells deprived of glucose. The SNF3 gene was disrupted at its chromosomal locus by several methods to create null mutations. Disruption resulted in growth phenotypes consistent with a defect in glucose uptake. Surprisingly, gene disruption did not cause aberrant regulation of SUC2 expression. We discuss possible mechanisms by which abnormal SNF3 gene products encoded by missense alleles could perturb regulatory functions.  相似文献   

9.
The high-affinity glucose transport process in Saccharomyces cerevisiae whole cells was regulated by catabolite repression and inactivation. The low-affinity process was constitutive, and its activity was inhibited in proportion to the extent of derepression of the high-affinity process. The latter finding suggests that there is some regulatory relationship between the two processes.  相似文献   

10.
11.
12.
13.
By using a modified technique to measure glucose uptake in Saccharomyces cerevisiae, potential uncertainties have been identified in previous determinations. These previous determinations had led to the proposal that S. cerevisiae contained a constitutive low-affinity glucose transporter and a glucose-repressible high-affinity transporter. We show that, upon transition from glucose-repressed to -derepressed conditions, the maximum rate of glucose transport is constant and only the affinity for glucose changes. We conclude that the transporter or group of transporters is constitutive and that regulation of glucose transport occurs via a factor that modifies the affinity of the transporters and not via the synthesis of different kinetically independent transporters. Such a mechanism could, for instance, be accommodated by the binding of kinases causing a change in affinity for glucose.  相似文献   

14.
In glucose-limited continuous cultures, a Crabtree positive yeast such as Saccharomyces cerevisiae displays respiratory metabolism at low dilution rates (D) and respiro-fermentative metabolism at high D. We have studied the onset of ethanol production and cell cycle behavior in glucose-limited chemostat cultures of the wild type S. cerevisiae strain CEN.PK122 (WT) and isogenic mutants, snf1 (cat1) and snf4 (cat3) defective in proteins involved in catabolite derepression and the mutant in glucose repression mig1 (cat4). The triggering of fermentative metabolism was dependent upon catabolite repression properties of yeast and was coincident with a significant decrease of G1 length. WT cells of the strain CEN.PK122 displayed respiratory metabolism up to a D of 0.2 h-1 and exhibited longer G1 lengths than the snf1 and snf4 mutants that started fermenting after a D of 0.1 and 0.15 h-1, respectively. The catabolite derepression mutant snf4 showed a significant decrease in the duration of G1 with respect to the WT. An increase of 300% to 400% in the expression of CDC28 (CDC28-lacZ) with a noticeable shortening in G1 to values lower than approximately 150 min, was detected in the transformed wild type CEN.SC13-9B in glucose-limited chemostat cultures. The expression of CDC28-lacZ was analyzed in the wild type and isogenic mutant strains growing at maximal rate on glucose or in the presence of ethanol or glycerol. Two- to three-fold lower expression of the CDC28-lacZ fusion gene was detected in the snf1 or snf4 disruptants with respect to the WT and mig1 strains in the presence of all carbon sources. This effect was further shown to be growth rate-dependent exhibiting apparently, a threshold effect in the expression of the fusion gene with respect to the length of G1, similar to that shown in chemostat cultures. At the onset of fermentation, the control of the glycolytic flux was highly distributed between the uptake, hexokinase, and phosphofructokinase steps. Particularly interesting was the fact that the snf1 mutant exhibited the lowest fluxes of ethanol production, the highest of respiration and correspondingly, the branch to the tricarboxylic acid cycle was significantly rate-controling of glycolysis.  相似文献   

15.
L. G. Vallier  M. Carlson 《Genetics》1991,129(3):675-684
To identify new genes required for depression of the SUC2 (invertase) gene in Saccharomyces cerevisiae, we have isolated mutants with defects in raffinose utilization. In addition to mutations in SUC2 and previously identified SNF genes, we recovered recessive mutations that define four new complementation groups, designated snf7 through snf10. These mutations cause defects in the derepression of SUC2 in response to glucose limitation. We also recovered five alleles of gal11 and showed that a gal11 null mutation decreases SUC2 expression to 30% of the wild-type level. Finally, one of the mutants carries a grr1 allele that converts SUC2 from a glucose-inducible gene.  相似文献   

16.
Clyde L. Denis 《Genetics》1984,108(4):833-844
Recessive mutations in two negative control elements, CRE1 and CRE2, have been obtained that allow the glucose-repressible alcohol dehydrogenase (ADHII) of yeast to escape repression by glucose. Both the cre1 and cre2 alleles affected ADHII synthesis irrespective of the allele of the positive effector, ADR1. However, for complete derepression of ADHII synthesis, a wild-type ADR1 gene was required. Neither the cre1 nor cre2 alleles affected the expression of several other glucose-repressible enzymes. A third locus, CCR4, was identified by recessive mutations that suppressed the cre1 and cre2 phenotypes. The ccr4 allele blocked the derepression of ADHII and several other glucose-repressible enzymes, indicating that the CCR4 gene is a positive control element. The ccr4 allele had no effect on the repression of ADHII when it was combined with the ADR1-5c allele, whereas the phenotypically similar ccr1 allele, which partially suppresses ADR1-5c, did not suppress the cre1 or cre2 phenotype. Complementation studies also indicated that ccr1 and snf1 are allelic. A model of ADHII regulation is proposed in which both ADR1 and CCR4 are required for ADHII expression. CRE1 and CRE2 negatively control CCR4, whereas CCR1 is required for ADR1 function.  相似文献   

17.
J. Tu  L. G. Vallier    M. Carlson 《Genetics》1993,135(1):17-23
Mutations in the SNF7 gene of Saccharomyces cerevisiae prevent full derepression of the SUC2 (invertase) gene in response to glucose limitation. We report the molecular cloning of the SNF7 gene by complementation. Sequence analysis predicts that the gene product is a 27-kDa acidic protein. Disruption of the chromosomal locus causes a fewfold decrease in invertase derepression, a growth defect on raffinose, temperature-sensitive growth on glucose, and a sporulation defect in homozygous diploids. Genetic analysis of the interactions of the snf7 null mutation with ssn6 and spt6/ssn20 suppressor mutations distinguished SNF7 from the SNF2, SNF5 and SNF6 genes. The snf7 mutation also behaved differently from mutations in SNF1 and SNF4 in that snf7 ssn6 double mutants displayed a synthetic phenotype of severe temperature sensitivity for growth. We also mapped SNF7 to the right arm of chromosome XII near the centromere.  相似文献   

18.
We show that cells deleted for SNF3, HXT1, HXT2, HXT3, HXT4, HXT6, and HXT7 do not take up glucose and cannot grow on media containing glucose as a sole carbon source. The expression of Hxt1, Hxt2, Hxt3, Hxt6, or Gal2 in these cells resulted in glucose transport and allowed growth on glucose media. In contrast, the expression of Snf3 failed to confer glucose uptake or growth on glucose. HXT6 is highly expressed on raffinose, low glucose, or nonfermentable carbon sources but is repressed in the presence of high concentrations of glucose. The maintenance of HXT6 glucose repression is strictly dependent on Snf3 and not on intracellular glucose. In snf3 delta cells expression of HXT6 is constitutive even when the entire repertoire of HXT genes is present and glucose uptake is abundant. In addition, glucose repression of HXT6 does not require glucose uptake by HXT1, HXT2, HXT3 or HXT4. We show that a signal transduction pathway defined by the Snf3-dependent hexose regulation of HXT6 is distinct from but also overlaps with general glucose regulation pathways in Saccharomyces cerevisiae. Finally, glucose repression of ADH2 and SUC2 is intact in snf3 delta hxt1 delta hxt2 delta hxt3 delta hxt4 delta hxt6 delta hxt7 delta gal2 cells, suggesting that the sensing and signaling mechanism for general glucose repression is independent from glucose uptake.  相似文献   

19.
The kinetics of glucose transport in a number of different mutants of Saccharomyces cerevisiae with multiple deletions in the glucose transporter gene family were determined. The deletions led to differences in maximal rate and affinity for glucose uptake by the cells, dependent on the growth conditions. At the same time, there were changes in glucose repression, as determined by expression of invertase activity. Only in the strain with genes HXT1-4 and SNF3 deleted but carrying HXT6/7 were glucose uptake kinetics and invertase activity independent of the presence or concentration of glucose in the growth medium. Some degree of glucose sensitivity was recovered if the SNF3 or HXT2 gene was present in the multiple-deletion background. It is hypothesized that during growth on glucose, both modulation of the kinetics of glucose uptake and derepression of invertase activity require the presence of more than one active gene of the glucose transporter family.  相似文献   

20.
The expression of high-affinity glucose uptake in Saccharomyces cerevisiae strains carrying conditional mutations conferring a block of secretion and cell surface growth (sec) revealed a requirement for a functional secretory pathway for derepression of carrier activity. Thus, in strains carrying the sec1-1, sec4-2, sec7-1, sec14-3, or sec17-1 mutation, no high-affinity carrier activity was expressed after a shift to derepressing glucose concentrations at the nonpermissive temperature. In the case of sec18-1, however, derepression of carrier activity did occur at both the permissive and nonpermissive temperature, but not to the same extent as found in the wild-type strain, suggesting that SEC18 function may not be essential for expression of carrier activity. In sec1-1, accumulation of high-affinity carrier activity (or a component thereof) in presecretory vesicles during incubation at the nonpermissive temperature was demonstrated. The presence of a high glucose concentration in the medium did not affect transfer of that accumulated carrier function to the cell surface. Carrier function did not accumulate in strains carrying the other sec mutations. Analysis of the stability of high-affinity carrier activity at 37 degrees C demonstrated rapid and unexpected loss of carrier activity not affected by the presence of glucose in the medium. Thus, blockage of cell surface growth seems to affect turnover rates of hexose carrier activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号