首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entry into mitosis requires the phosphorylation of multiple substrates by cyclin B-Cdk1, while exit from mitosis requires their dephosphorylation, which depends largely on the phosphatase PP2A in complex with its B55 regulatory subunit (Tws in Drosophila). At mitotic entry, cyclin B-Cdk1 activates the Greatwall kinase, which phosphorylates Endosulfine proteins, thereby activating their ability to inhibit PP2A-B55 competitively. The inhibition of PP2A-B55 at mitotic entry facilitates the accumulation of phosphorylated Cdk1 substrates. The coordination of these enzymes involves major changes in their localization. In interphase, Gwl is nuclear while PP2A-B55 is cytoplasmic. We recently showed that Gwl suddenly relocalizes from the nucleus to the cytoplasm in prophase, before nuclear envelope breakdown and that this controlled localization of Gwl is required for its function. We and others have shown that phosphorylation of Gwl by cyclin B-Cdk1 at multiple sites is required for its nuclear exclusion, but the precise mechanisms remained unclear. In addition, how Gwl returns to its nuclear localization was not explored. Here we show that cyclin B-Cdk1 directly inactivates a Nuclear Localization Signal in the central region of Gwl. This phosphorylation facilitates the cytoplasmic retention of Gwl, which is exported to the cytoplasm in a Crm1-dependent manner. In addition, we show that PP2A-Tws promotes the return of Gwl to its nuclear localization during cytokinesis. Our results indicate that the cyclic changes in Gwl localization at mitotic entry and exit are directly regulated by the antagonistic cyclin B-Cdk1 and PP2A-Tws enzymes.  相似文献   

2.
Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B–Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B–Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B–Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B–Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A‐dependent dephosphorylation of cyclin B–Cdc2 substrates is increased in GW‐depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B–Cdc2 but also by the regulation of PP2A by GW.  相似文献   

3.
4.
Protein Ser/Thr phosphatase-1 (PP1) controls the retinoblastoma protein (pRb) function, including its dephosphorylation at mitotic exit. Since PP1delta was found to coimmunoprecipitate with pRb from mitotic and early G1 cells, we further investigated the PP1delta-pRb association using GST-full length and GST-deletion mutants of delta. GST-delta pulled-down pRb from G2, mitotic and G1 HeLa cells, thus confirming the coimmunoprecipitation results. Among the delta deletion mutants tested, pRb was pulled down by mutant 159-295, which reproduces the C-terminal domain of delta without the C-terminus, whereas the C-terminus alone did not pull-down pRb. Further fragmentation of the 159-295 mutant indicated that pRb was pulled down by fragment 195-260, which includes several residues involved in substrate binding, and by fragment 159-212, which contains the putative pRb-binding motif LxSxE. Altogether the results supported the hypothesis that PP1delta may contribute to the dephosphorylation of pRb at mitotic exit and that the PP1delta-pRb interaction may be at multiple sites.  相似文献   

5.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   

6.
The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin‐dependent kinase (Cdk) activity reaches its peak, the anaphase‐promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk‐counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.  相似文献   

7.
SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin1 binding, and spindle checkpoint duration. When a phosphorylation site mutant Sil is stably expressed, the duration of the spindle checkpoint is shortened in cells challenged with taxol or nocodazole, and the cells revert to a G2-like state. This event is associated with the downregulation of the kinase activity of the Cdc2/cyclin B1 complex and the dephosphorylation of the threonine 161 on the Cdc2 subunit. Sil downregulation by plasmid-mediated RNA interference limited the ability of cells to activate the spindle checkpoint and correlated with a reduction of Cdc2/cyclin B1 activity and phosphorylation on T161 on the Cdc2 subunit. These data suggest that a critical region of Sil is required to mediate the presentation of Cdc2 activity during spindle checkpoint arrest.  相似文献   

8.
Pin2/TRF1 was independently identified as a telomeric DNA binding protein (TRF1) [1] and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its ability to induce mitotic catastrophe [2, 3]. Pin2/TRF1 has been shown to bind telomeric DNA as a dimer [3-7] and to negatively regulate telomere length [8-11]. Interestingly, Pin2/TRF1 levels are regulated during the cell cycle, being increased in late G2 and mitosis and degraded as cells exit from mitosis [3]. Furthermore, overexpression of Pin2/TRF1 induces mitotic entry and then apoptosis [12]. This Pin2/TRF1 activity can be significantly potentiated by the microtubule-disrupting agent nocodazole [12] but is suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is important for preventing apoptosis upon DNA damage [13]. These results suggest a role for Pin2/TRF1 in mitosis. However, nothing is known about how Pin2/TRF1 is involved in mitotic progression. Here, we describe a surprising physical interaction between Pin2/TRF1 and microtubules in a cell cycle-specific manner. Both expressed and endogenous Pin2/TRF1 proteins were localized to the mitotic spindle during mitosis. Furthermore, Pin2/TRF1 directly bound microtubules via its C-terminal domain. Moreover, Pin2/TRF1 also promoted microtubule polymerization in vitro. These results demonstrate for the first time a specific interaction between Pin2/TRF1 and microtubules in a mitosis-specific manner, and they suggest a new role for Pin2/TRF1 in modulating the function of microtubules during mitosis.  相似文献   

9.
The reversible protein phosphorylation on serine or threonine residues that precede proline (pSer/Thr-Pro) is a key signaling mechanism for the control of various cellular processes, including cell division. The pSer/Thr-Pro moiety in peptides exists in the two completely distinct cis and trans conformations whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. Previous results suggest that Pin1 might regulate the conformation and dephosphorylation of its substrates. However, it is not known whether phosphorylation-dependent prolyl isomerization occurs in a native protein and/or affects dephosphorylation of pSer/Thr-Pro motifs. Here we show that the major Pro-directed phosphatase PP2A is conformation-specific and effectively dephosphorylates only the trans pSer/Thr-Pro isomer. Furthermore, Pin1 catalyzes prolyl isomerization of specific pSer/Thr-Pro motifs both in Cdc25C and tau to facilitate their dephosphorylation by PP2A. Moreover, Pin1 and PP2A show reciprocal genetic interactions, and prolyl isomerase activity of Pin1 is essential for cell division in vivo. Thus, phosphorylation-specific prolyl isomerization catalyzed by Pin1 is a novel mechanism essential for regulating dephosphorylation of certain pSer/Thr-Pro motifs.  相似文献   

10.
Xu YX  Manley JL 《Molecular cell》2007,26(2):287-300
The prolyl isomerase Pin1 plays important roles in numerous cellular processes. Here we provide evidence that Pin1 has an important function in chromosome condensation during mitosis. We first demonstrate that the interaction of Pin1 with chromatin is greatly elevated in G2/M phase and that this correlates with the presence on chromosomes of several mitotic phosphoproteins, especially topoisomerase (Topo) IIalpha. Inducible overexpression of Pin1 was shown to result in higher M phase-specific phosphorylation, while downregulation of Pin1 by siRNA treatment reduced phosphorylation of TopoIIalpha and other mitotic proteins. Furthermore, immunodepletion of Pin1 from mitotic cell extracts prevented such extracts from inducing chromosome condensation when added to S phase nuclei. Indeed, purified Pin1 and cdc2/cyclin B kinase were by themselves sufficient to induce condensation. This reflects the ability of Pin1 to increase TopoIIalpha phosphorylation by cdc2/cyclin B in vitro, which in turn dramatically increased formation of a TopoIIalpha/Pin1/DNA complex.  相似文献   

11.
Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, inhibition or depletion of neither Fcp1 nor PP2A appears to block dephosphorylation of the bulk of mitotic Cdk1 substrates during mitotic exit. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit.  相似文献   

12.
13.
Satoru Mochida 《EMBO reports》2015,16(11):1411-1412
Entry into and exit from mitosis are brought about by the increase and decrease, respectively, in the activity of cyclin‐dependent kinases (CDKs). Many examples are known of how the properties of particular proteins can be altered by phosphorylation, promoting processes like nuclear envelope breakdown or assembly of the mitotic spindle. The regulation of protein phosphatases is shedding new light on how this quantitative change of protein phosphorylation is achieved by a tight linkage between CDK activity and CDK‐antagonizing phosphatases. On entering mitosis, increasing CDK activity ignites a repressive pathway that acts on PP2A‐B55, one of the major phosphatases for CDK substrates in higher eukaryotes. This repression allows rapid and near complete substrate phosphorylation. But this raises a serious bootstrapping problem at mitotic exit. Because the phosphatase responsible for CDK substrates has been shut off, how can the repression pathway, which was activated by CDK, be reversed? In the current issue, Heim and colleagues propose an answer to this question 1 . Their data show that dephosphorylation of Greatwall kinase (Gwl) at its auto‐phosphorylation site(s) is targeted by PP1, which leads to significant decrease in Gwl kinase activity. This early action by PP1 seems to be a prerequisite for PP2A‐B55 to escape from repression and to return Gwl back to its inactive hypophosphorylated interphase state. This study provides an important piece of evidence for how the repression mechanism of PP2A‐B55 is made reversible, and offers a solution to the bootstrap problem.  相似文献   

14.
Nakamura M  Zhou XZ  Kishi S  Lu KP 《FEBS letters》2002,514(2-3):193-198
Pin2/TRF1 was independently identified as a telomeric DNA-binding protein (TRF1) that regulates telomere length, and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its lethal phenotype. We have previously demonstrated that Pin2/TRF1 levels are cell cycle-regulated and its overexpression induces mitotic arrest and then apoptosis. This Pin2/TRF1 activity can be potentiated by microtubule-disrupting agents, but suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is critical in mediating for many, but not all, ATM-dependent phenotypes. Interestingly, Pin2/TRF1 specifically localizes to mitotic spindles in mitotic cells and affects the microtubule polymerization in vitro. These results suggest a role of Pin2/TRF1 in mitosis. However, nothing is known about whether Pin2/TRF1 affects the spindle function in mitotic progression. Here we characterized a new Pin2/TRF1-interacting protein, EB1, that was originally identified in our yeast two-hybrid screen. Pin2/TRF1 bound EB1 both in vitro and in vivo and they also co-localize at the mitotic spindle in cells. Furthermore, EB1 inhibits the ability of Pin2/TRF1 to promote microtubule polymerization in vitro. Given that EB1 is a microtubule plus end-binding protein, these results further confirm a specific interaction between Pin2/TRF1 and the mitotic spindle. More importantly, we have shown that inhibition of Pin2/TRF1 in ataxia-telangiectasia cells is able to fully restore their mitotic spindle defect in response to microtubule disruption, demonstrating for the first time a functional involvement of Pin2/TRF1 in mitotic spindle regulation.  相似文献   

15.
The spindle assembly checkpoint arrests cells in mitosis when defects in mitotic spindle assembly or partitioning of the replicated genome are detected. This checkpoint blocks exit from mitosis until the defect is rectified or the cell initiates apoptosis. In this study we have used caffeine to identify components of the mechanism that signals apoptosis in mitotic checkpoint-arrested cells. Addition of caffeine to spindle checkpoint-arrested cells induced >40% apoptosis within 5 h. It also caused proteasome-mediated destruction of cyclin B1, a corresponding reduction in cyclin B1/cdk1 activity, and reduction in MPM-2 reactivity. However, cells retained MAD2 staining at the kinetochores, an indication of continued spindle checkpoint function. Blocking proteasome activity did not block apoptosis, but continued spindle checkpoint function was essential for apoptosis. After systematically eliminating all known targets, we have identified p21-activated kinase PAK1, which has an anti-apoptotic function in spindle checkpoint-arrested cells, as a target for caffeine inhibition. Knockdown of PAK1 also increased apoptosis in spindle checkpoint-arrested cells. This study demonstrates that the spindle checkpoint not only regulates mitotic exit but apoptosis in mitosis through the activity of PAK1.  相似文献   

16.
Mitosis in metazoa requires nuclear envelope (NE) disassembly and reassembly. NE disassembly is driven by multiple phosphorylation events. Mitotic phosphorylation of the protein BAF reduces its affinity for chromatin and the LEM family of inner nuclear membrane proteins; loss of this BAF-mediated chromatin-NE link contributes to NE disassembly. BAF must reassociate with chromatin and LEM proteins at mitotic exit to reform the NE; however, how its dephosphorylation is regulated is unknown. Here, we show that the C. elegans protein LEM-4L and its human ortholog Lem4 (also called ANKLE2) are both required for BAF dephosphorylation. They act in part by inhibiting BAF's mitotic kinase, VRK-1, in vivo and in vitro. In addition, Lem4/LEM-4L interacts with PP2A and is required for it to dephosphorylate BAF during mitotic exit. By coordinating VRK-1- and PP2A-mediated signaling on BAF, Lem4/LEM-4L controls postmitotic NE formation in a function conserved from worms to humans.  相似文献   

17.
Exit from mitosis in all eukaroytes requires inactivation of the mitotic kinase. This occurs principally by ubiquitin-mediated proteolysis of the cyclin subunit controlled by the anaphase-promoting complex (APC). However, an abnormal spindle and/or unattached kinetochores activates a conserved spindle checkpoint that blocks APC function. This leads to high mitotic kinase activity and prevents mitotic exit. DBF2 belongs to a group of budding yeast cell cycle genes that when mutated prevent cyclin degradation and block exit from mitosis. DBF2 encodes a protein kinase which is cell cycle regulated, peaking in metaphase-anaphase B/telophase, but its function remains unknown. Here, we show the Dbf2p kinase activity to be a target of the spindle checkpoint. It is controlled specifically by Bub2p, one of the checkpoint components that is conserved in fission yeast and higher eukaroytic cells. Significantly, in budding yeast, Bub2p shows few genetic or biochemical interactions with other members of the spindle checkpoint. Our data now point to the protein kinase Mps1p triggering a new parallel branch of the spindle checkpoint in which Bub2p blocks Dbf2p function.  相似文献   

18.
Cyclin‐dependent kinase (Cdk) both promotes mitotic entry (spindle assembly and anaphase) and inhibits mitotic exit (spindle disassembly and cytokinesis), leading to an elegant quantitative hypothesis that a single cyclin oscillation can function as a ratchet to order these events. This ratchet is at the core of a published ODE model for the yeast cell cycle. However, the ratchet model requires appropriate cyclin dose–response thresholds. Here, we test the inhibition of mitotic exit in budding yeast using graded levels of stable mitotic cyclin (Clb2). In opposition to the ratchet model, stable levels of Clb2 introduced dose‐dependent delays, rather than hard thresholds, that varied by mitotic exit event. The ensuing cell cycle was highly abnormal, suggesting a novel reason for cyclin degradation. Cdc14 phosphatase antagonizes Clb2–Cdk, and Cdc14 is released from inhibitory nucleolar sequestration independently of stable Clb2. Thus, Cdc14/Clb2 balance may be the appropriate variable for mitotic regulation. Although our results are inconsistent with the aforementioned ODE model, revision of the model to allow Cdc14/Clb2 balance to control mitotic exit corrects these discrepancies, providing theoretical support for our conclusions.  相似文献   

19.
Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by cyclin B1–Cdk1 independently inhibits APC/C–Cdc20 activation. This creates a conundrum for how Cdc20 is activated before cyclin B1 degradation. Here, we show that the MCC component BubR1 harbors both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically, BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest, arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively, our work reveals how Cdc20 can be dephosphorylated in the presence of cyclin B1-Cdk1 activity without causing premature anaphase onset.  相似文献   

20.
The inactivation of mitotic cyclin-dependent kinases (CDKs) during anaphase is a prerequisite for the completion of nuclear division and the onset of cytokinesis [1, 2]. In the budding yeast Saccharomyces cerevisiae, the essential protein kinase Cdc15 [3] together with other proteins of the mitotic exit network (Tem1, Lte1, Cdc5, and Dbf2/Dbf20 [4-7]) activates Cdc14 phosphatase, which triggers cyclin degradation and the accumulation of the CDK inhibitor Sic1 [8]. However, it is still unclear how CDK inactivation promotes cytokinesis. Here, we analyze the properties of Cdc15 kinase during mitotic exit. We found that Cdc15 localized to the spindle pole body (SPB) in a unique pattern. Cdc15 was present at the SPB of the mother cell until late mitosis, when it also associated with the daughter pole. High CDK activity inhibited this association, while dephosphorylation of Cdc15 by Cdc14 phosphatase enabled it. The analysis of Cdc15 derivatives indicated that SPB localization was specifically required for cytokinesis but not for mitotic exit. These results show that Cdc15 has two separate functions during the cell cycle. First, it is required for the activation of Cdc14. CD14, in turn, promotes CDK inactivation and also dephosphorylates of Cdc15. As a consequence, Cdc15 binds to the daughter pole and triggers cytokinesis. Thus, Cdc15 helps to coordinate mitotic exit and cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号