首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
蘑菇体(革形体)是昆虫脑内非常重要的一个结构,构成蘑菇体的冠和叶在不同目昆虫中高度分化,其结构虽然保守,但形态上的变化在一定程度上反映了昆虫的进化地位.冠是触角叶嗅觉投射神经元的主要投射区,叶通过输出神经元联系蘑菇体与其它脑区.冠和叶在嗅觉记忆中不可或缺,垂直叶(α叶)支持长时记忆,中叶(γ叶)支持短时记忆.蘑菇体对嗅觉记忆的形成尤其是记忆的再现(提取)具有重要作用.乙酰胆碱(Ach)、γ-氨基丁酸(GABA)和一氧化氮(NO)等是蘑菇体嗅觉突触传递的主要神经递质.蘑菇体内的第二信使系统cAMP-PKA途径和NI-cGMP途径在嗅觉学习和记忆中起基础性作用.  相似文献   

2.
哺乳动物主要嗅觉系统和犁鼻系统信息识别的编码模式   总被引:4,自引:0,他引:4  
哺乳动物具有两套嗅觉系统, 即主要嗅觉系统和犁鼻系统。前者对环境中的大多数挥发性化学物质进行识别, 后者对同种个体释放的信息素进行识别。本文从嗅觉感受器、嗅球、嗅球以上脑区三个水平综述了这两种嗅觉系统对化学信息识别的编码模式。犁鼻器用较窄的调谐识别信息素成分, 不同于嗅上皮用分类性合并受体的方式识别气味; 副嗅球以接受相同受体输入的肾丝球所在区域为单位整合信息, 而主嗅球通过对肾丝球模块的特异性合并编码信息; 在犁鼻系统, 信息素的信号更多地作用于下丘脑区域, 引起特定的行为和神经内分泌反应。而在主要嗅觉系统, 嗅皮层可能采用时间模式编码神经元群, 对气味的最终感受与脑的不同区域有关。犁鼻系统较主要嗅觉系统的编码简单, 可能与其执行的功能较少有关。  相似文献   

3.
鱼类嗅觉系统和性信息素受体的研究进展   总被引:1,自引:0,他引:1  
鱼类嗅觉系统包括外部嗅觉器官、嗅神经和嗅球三个部分.嗅觉器官也称为嗅囊,由嗅上皮和髓质组成.气味物质的化学信息主要由嗅上皮上随机分布的嗅觉感受神经元感知,通过嗅神经将嗅觉信息传递到嗅球,嗅球在空间上有不同的功能分区,嗅觉信息经过嗅球各分区整合后分别传入端脑,发挥其生理功能.性信息素在鱼类生殖过程中的作用是通过嗅觉系统来完成的,其中嗅觉感受神经元上的性信息素受体起着重要作用.鱼类性信息素受体的研究主要从两个方面入手,一是从低浓度特异的性信息素引起嗅觉器官电生理反应或行为反应入手,寻找特异的性信息素受体;二是参照哺乳动物嗅觉受体的研究结果,从嗅觉受体基因遗传保守性入手,研究鱼类性信息素受体的结构与功能.  相似文献   

4.
蚊虫搜寻吸血寄主和产卵行为的调节因子及相关嗅觉机理   总被引:1,自引:0,他引:1  
杜永均  吴仲南 《昆虫学报》2007,50(10):1060-1069
嗅觉在蚊虫的吸血寄主搜寻、产卵和糖源搜寻行为中起决定作用,而在交配行为中的作用并不清楚。本文系统全面地综述了近20年来蚊虫化学生态学和嗅觉识别的分子机理的研究。蚊虫的触角、下颚须和口喙上的嗅觉感器感觉环境中释放的各种挥发性化合物。气味分子与嗅觉气味结合蛋白和气味受体的结合所启动的一系列生化反应产生神经动作电位。蚊虫嗅觉神经元编码气味中化合物的组成、浓度及其暂时瞬间的浓度变化和空间分布。吸血前后神经元的活性在数量和质量上有变化,反映了蚊虫在搜寻吸血寄主和产卵行为上的调节。在吸血寄主搜寻中,人体和动物释放的二氧化碳、乳酸以及其他气味协同引诱蚊虫向目标气味源定向飞行,最后找到吸血寄主。而成熟产卵雌蚊是利用产卵场所释放的腐烂气味寻找适宜的产卵场所,一些蚊虫卵、幼虫或蛹分泌的产卵信息素引诱和刺激雌蚊产卵,并与产卵生境气味起协同作用。植物气味尤其是花香味引诱蚊虫找到蜜源。驱避剂也是直接或间接通过嗅觉起作用,一些驱蚊剂由于阻断嗅觉反应而抑制蚊虫的定向飞行。从植物、动物或人体以及产卵场所释放的气味中有望找到有效的引诱和驱避化合物。对蚊虫嗅觉识别机理的认识将使我们开发出有效的蚊虫诱捕技术,进而应用于种群监测和控制。  相似文献   

5.
啮齿动物的嗅觉通讯研究进展   总被引:6,自引:3,他引:6  
通过对近40 年来啮齿动物嗅觉通讯的研究综述, 主要介绍嗅觉信号的来源、组成及其对啮齿动物行为生理所产生的作用。啮齿动物嗅觉通讯的信号来源主要是粪便、尿液和特化皮肤腺等, 对这些化学信号的成分分析主要集中在各种信息素(Pheromone) 的结构、来源及其引起的行为反应。目前, 在对啮齿动物嗅觉通讯神经通路的研究中, 对主嗅觉系统和犁鼻器系统在动物嗅觉通讯中的作用仍将是人们研究的重点; 而通过信息素作用所产生的各种行为反应的神经内分泌机制也是动物嗅觉通讯领域研究的热点之一。研究气味信号对动物行为和生理等方面所产生的作用, 将有助于揭示啮齿动物嗅觉通讯在其社会行为中的重要作用。  相似文献   

6.
果蝇嗅觉分子机理研究进展   总被引:2,自引:0,他引:2  
黑腹果蝇Drosophila melanogaster是生物学研究的重要模式生物,也是探索研究生物体嗅觉奥秘的理想材料。近年来,由于分子生物学技术在神经科学领域的广泛应用,黑腹果蝇嗅觉机理研究取得了许多重大突破, 对气味分子受体及其识别机理、 嗅觉神经电信号的产生和传递、嗅觉信息的加工、编码以及记忆等方面都有了深入的了解。研究表明, 果蝇约1 300个嗅神经元(olfactory receptor neurons, ORNs)共表达62种不同的气味受体蛋白(olfactory receptor proteins, ORs), 用以检测和识别其所感受的所有化学气味分子。许多OR所识别的气味分子配体已鉴定出来,普通的气味(如水果的气味)由数种不同的OR组合来识别,而信息素(pheromone)分子则由单种特定的OR来检测。气味信息在嗅神经元内转换成神经电信号,嗅觉电信号沿嗅神经元的轴突传递到触角叶, 再经投射神经元(projection neurons, PNs)将信息送至高级中枢如蘑菇体(mushroom body, MB)和侧角(lateral horn, LH),最终引发行为反应。在黑腹果蝇嗅觉信息传递通路中,某些蛋白如Dock,N-cadherin,Fruitless等起着重要作用,缺失这些蛋白会导致嗅觉异常。本文对这些研究进展作一综述。  相似文献   

7.
昆虫气味结合蛋白的研究进展   总被引:1,自引:0,他引:1  
摘要: 昆虫主要依赖其复杂且灵敏的化学感受系统来识别并区分外界环境中的各种化学信号。嗅觉是负责嗅觉信号传导的感官方式,能够引起昆虫觅食、产卵、交配和躲避天敌等对生存和繁殖至关重要的行为反应。在嗅觉感知过程中,气味结合蛋白(odorant binding proteins, OBPs)最先与外界脂溶性化学物质相互作用,并将其转运至化学受体神经元上,激活树突膜表面分布的嗅觉受体(olfactory receptors, ORs),是嗅觉系统正常运行的必需蛋白。近年来,随着高通量测序和分子生物学技术的快速发展,越来越多的昆虫OBPs相继得以鉴定并开展功能研究。昆虫OBPs是一类可溶性的小分子蛋白,一般由6个α-螺旋构成一个稳定、紧密的疏水性结合腔,其构象变化因昆虫种类和配体结构不同而有所差异。OBPs的分布不受限于嗅觉器官,还在口器、足、中肠、腺体等非嗅觉组织中表达,具有嗅觉识别、味觉感受、营养物质转运、信息素合成与释放、组织发育与分化等生理功能。OBPs行使以上功能的共同特性为结合和溶解包括信息素组分、普通气味分子和非挥发性物质等的疏水性小分子物质。昆虫OBPs的稳定性和多功能性暗示其可广泛应用于害虫防治、生物传感器、分析化学、生态学等多个领域。本文对过去20多年来昆虫OBPs的相关研究进行综述,为进一步深入开展OBPs的功能研究提供理论参考。  相似文献   

8.
高度灵敏的嗅觉系统,能够帮助昆虫准确识别环境中不同来源的挥发性化合物,在昆虫觅食、交配和产卵等生命活动过程中起着至关重要的作用.通过感觉神经元膜上数量巨大且种类繁多的嗅觉受体,昆虫可以识别不同的气味物质,进而调控其行为.已知的昆虫嗅觉受体主要有三种,离子型受体、气味受体和响应二氧化碳及信息素的味觉受体.目前嗅觉受体的分子结构及其介导的信号转导机制仍然没有得到完整的阐释,嗅觉受体配体的鉴定工作也还任重道远.本综述就昆虫嗅觉受体的结构、进化、功能表征方法以及气味受体介导信号转导的机制等方面的研究进展进行了综述,以期对研究昆虫嗅觉编码和调控,以及昆虫与植物间互作提供一定的理论参考.  相似文献   

9.
昆虫的嗅觉系统与其各项生命活动息息相关,化学感受蛋白(CSPs)是嗅觉系统中的重要组成部分,可以结合气味或信息素分子,并传递给嗅觉受体,完成嗅觉相关功能。随着分子生物学技术和测序手段的不断发展,越来越多的昆虫CSPs得到鉴定。CSPs在昆虫体内广泛分布于触角、跗节、下颚须等化学感受器官,同时也在表皮、腹部、体躯等非感受器官大量表达,具有感知化学分子的功能并且与昆虫生长、发育、繁殖等生理功能及昆虫对杀虫剂的抗性相关。本文通过从CSPs的发现和命名、分子特性、结构及分布等方面展开综述,着重介绍CSPs的气味分子识别作用机制、抗药性机制及功能分类,以期为今后利用CSPs作为靶标防治害虫提供参考。  相似文献   

10.
昆虫感觉气味的细胞与分子机制研究进展   总被引:1,自引:1,他引:0  
张龙 《昆虫知识》2009,46(4):509-517
昆虫作为地球上最为成功的类群,已经成功地进化了精细的化学感受系统,通过化学感受系统适应各种复杂的环境,保持种群的繁荣。自1991年在动物中发现嗅觉受体基因以来,关于昆虫感受化学信息的周缘神经系统的分子和细胞机制方面的进展十分迅速。文章主要就昆虫周缘神经系统的感受化学信息的分子和细胞机制进行综述。首先对昆虫感觉气味的细胞机制的研究进展进行简要介绍。昆虫嗅觉神经元在感受化学信息过程中起着极为重要的作用,昆虫嗅觉神经元上表达的嗅觉受体不同而执行着各异的功能。各种嗅觉神经元对于化学信息的感受谱有较大的区别;嗅觉神经元对化学信息类型、浓度、流动动态等产生相应的电生理特征反应。研究表明同一种神经原可以感受多种化学信息,而一种化学信息也可以被多种神经原所感受。由神经原对化学信息感受所形成的特征组合就是感受化学信息的编码。其次较为详细地论述与昆虫感受气味分子相关的一些蛋白质的研究进展。气味分子结合蛋白是一类分子量较小、水溶性的蛋白,主要位于化学感受器神经原树突周围的淋巴液中。在结构上的主要特征是具有6个保守的半光氨酸和由6个α螺旋组成的结合腔。自1981年发现以来,已经在40余种昆虫中发现上百种。由于研究手段的不断进步,已经对该类蛋白的表达特征、结合特性以及三维结构和结合位点进行了大量的研究,提出了多个可能的功能假说,在诸多的假说中,较为广泛接受的是气味分子结合蛋白在昆虫感觉气味的过程中,是与疏水性的气味分子相结合,并将气味分子运输到嗅觉神经原树突膜上的嗅觉受体上。这些处于树突膜上的嗅觉受体则是昆虫感觉气味过程中的另一个十分重要的蛋白质。目前,已经在果蝇、按蚊、蜜蜂和家蚕等10余个昆虫种类中发现上百个嗅觉受体蛋白基因。这类蛋白是跨膜蛋白,一般具有7个跨膜区,整个蛋白的氨基酸残基在400~600个。昆虫的嗅觉受体蛋白的N-端在胞内,而C-端在胞外,这与G耦联蛋白不同。而且,昆虫的一个嗅觉神经元可以表达1~3个嗅觉受体蛋白,也与哺乳动物的一个神经元只表达一种受体蛋白有所不同。每种嗅觉受体可以感受多种气味分子,而一种气味分子可以被多个嗅觉受体所感知,这样组成了感受化学信息的编码谱。最近采用基因敲除技术和膜片钳技术研究发现,昆虫的嗅觉受体蛋白在信号传导中也有特殊性,即嗅觉受体可以直接作为离子通道,而引起动作电位。还有近来的研究表明,神经膜蛋白对于果蝇的性信息素感受神经元感受性信息素cVA是必要的。实际上,昆虫对于化学信息的感受和信号的转导,并不是上述蛋白单独起作用完成的,而是多种蛋白相互作用的结果。论文最后对该领域研究内容进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号