首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified virion DNA of about 200 kilobase pairs of tupaia herpesvirus strain 2 was cleaved with EcoRI or HindIII restriction endonuclease. Restriction fragments representing the complete viral genome including both termini were inserted into the EcoRI, HindIII, and EcoRI-HindIII sites of the bacterial plasmid pAT153. Restriction maps for the restriction endonucleases EcoRI and HindIII were constructed with data derived from Southern blot hybridizations of individual viral DNA fragments or cloned DNA fragments which were hybridized to either viral genome fragments or recombinant plasmids. The analysis revealed that the tupaia herpesvirus genome consists of a long unique sequence of 200 kilobase pairs and that inverted repeat DNA sequences of greater than 40 base pairs do not occur, in agreement with previous electron microscopic data. No DNA sequence homology was detectable between the tupaia herpesvirus DNA and the genome of murine cytomegalovirus, which was reported to have a similar structure. In addition, seven individual isolates of tupaia herpesvirus were characterized. The isolates can be grouped into five strains by their DNA cleavage patterns.  相似文献   

2.
Genome organization of herpesvirus aotus type 2.   总被引:2,自引:1,他引:1       下载免费PDF全文
Herpesvirus aotus type 2, a virus commonly found in owl monkeys without overt disease, has a similar genome structure to the oncogenic herpesviruses of nonhuman primates (herpesvirus saimiri, herpesvirus ateles). Virion DNA of herpesvirus aotus type 2 (M-DNA) has an unique 110-kilobase-pair region of low G + C content (40.2%, L-DNA), inserted between stretches of repetitive H-DNA (68.7% G + C, about 41 kilobase pairs per molecule) that are variable in length. A minority of virions contain defective genomes that consist of repetitive H-DNA only. The H-DNA is composed of various types of repeat units that are related in sequence with each other. The two dominant types of repeats (2.3 and 2.7 kilobase pairs) were cloned and compared by restriction enzyme cleavages and partial nucleotide sequencing. They are homologous in at least 1.3 kilobase pairs. The two forms of repeat units are randomly arranged and oriented in tandem. Reassociation kinetics did not allow detection of sequence homologies between H- and L-DNA of herpesvirus aotus type 2 and the respective sequences of oncogenic primate herpesviruses.  相似文献   

3.
Herpesvirus sylvilagus is a lymphotropic (type gamma) herpesvirus of cottontail rabbits (Sylvilagus floridanus). Analysis of virion DNA of herpesvirus sylvilagus has revealed that the genome consists of one stretch of about 120 kilobase pairs of internal, unique DNA flanked by a variable number of 553-base-pair tandem repeats. The G + C content of the repetitive DNA is extremely high (83%), as determined by sequencing. The organization of the herpesvirus sylvilagus genome is, therefore, similar to that of the primate lymphotropic viruses herpesvirus saimiri and herpesvirus ateles.  相似文献   

4.
5.
Fragments of guinea pig cytomegalovirus (GPCMV) DNA produced by HindIII or EcoRI restriction endonuclease digestion were cloned into vectors pBR322 and pACYC184, and recombinant fragments representing ca. 97% of the genome were constructed. Hybridization of 32P-labeled cloned and gel-purified HindIII, EcoRI, and XbaI fragments to Southern blots of HindIII-, EcoRI-, and XbaI-cleaved GPCMV DNA verified the viral origin of cloned fragments and allowed construction of HindIII, EcoRI, and XbaI restriction maps. On the basis of the cloning and mapping experiments, the size of GPCMV DNA was calculated to include 239 kilobase pairs, corresponding to a molecular weight of 158 X 10(6). No cross-hybridization between any internal fragments was seen. We conclude that the GPCMV genome consists of a long unique sequence with terminal repeat sequences but without internal repeat regions. In addition, GPCMV DNA molecules exist in two forms. In the predominant form, the molecules demonstrate sequence homology between the terminal fragments; in the minor population, one terminal fragment is smaller by 0.7 X 10(6) daltons and is not homologous with the fragment at the other end of the physical map. The structural organization of GPCMV DNA is unique for a herpesvirus DNA, similar in its simplicity to the structure reported for murine cytomegalovirus DNA and quite dissimilar from that of human cytomegalovirus DNA.  相似文献   

6.
The genome of pseudorabies virus (PrV) consists of two components--a noninvertible long (L) and an invertible short (S) component. The S component is bracketed by inverted repeats. In some variant strains of PrV (which have a selective growth advantage in certain cell lines), a sequence normally present at the left end of the L component has been translocated to the right end of the L component next to the inverted repeat. Consequently, these strains have acquired a genome with an L component that is bracketed by inverted repeats and that also inverts. We have determined the restriction maps and have analyzed the nucleotide sequences of those parts of the genome of three strains with invertible L components that contain the translocated segment of DNA. The results were as follows. The translocated fragments were derived in all cases from the extreme left end of the L component only. The sizes of the translocated fragments were similar, ranging from 1.3 to 1.4 kilobase pairs. The junction between the L and S components in these strains was the same as that in standard viral concatemeric DNA. The translocation of sequences from the left end of the genome next to the inverted repeats was always accompanied by a deletion of sequences from the right end of the L component. The sizes of the deleted fragments varied considerably, ranging from 0.8 to 2.3 kilobase pairs. Sequence homology at the points of recombination, i.e., at the junction between the right end and the left end of the L component, existed sometimes but not always. A model depicting how a virus with a class 2 genome (such as PrV) may acquire a genome with characteristics of a class 3 genome (such as herpes simplex virus) is presented.  相似文献   

7.
Electron microscopic analysis of reassociated deoxyribonucleic acid (DNA) from the aquatic fungus Achlya bisexualis revealed details of the sequence arrangement of the inverted repeats and both the highly and moderately repetitive sequence clusters. We used the gene 32 protein-ethidium bromide technique for visualizing the DNA molecules, a procedure which provides excellent contrast between single- and double-stranded DNA regions. Long (greater than 6-kilobase) DNA fragments were isolated after reannealing to two different repetitive C0t values, and the renatured structures were then visualized in an electron microscope. Our results showed that the inverted repeat sequences were short (0.5 kilobase, number-average) and separated by nonhomologous DNA of various lengths. These pairs of sequences were not clustered within the genome. Both highly repetitive and moderately repetitive DNA sequences were organized as tandem arrays of precisely paired, regularly repeating units. No permuted clusters of repeating sequences were observed, nor was there evidence of interspersion of repetitive with single-copy DNA sequences in the Achlya genome.  相似文献   

8.
Nucleotide sequence and Southern hybridization data revealed a mosaic genome organization in a region that extends several thousand base pairs upstream of the exotoxin A (toxA) gene in Pseudomonas aeruginosa. An interstrain comparison of DNA in this region showed a pattern of alternating segments of homologous and nonhomologous sequences. Two nonhomologous elements, approximately 1 kilobase pair upstream of the gene in strains PA103 and Ps388, were characterized in more detail. The sequence elements, denoted IS-PA-1 and IS-PA-2 for the different strains, are about 1,000 and 785 base pairs long, respectively, and have 5-base-pair direct repeats at their boundaries, consistent with their being DNA insertion sequences. The distribution of these elements in 34 different strains was determined. IS-PA-1 was found in a single copy upstream of toxA in half of the strains and was found in two copies in four of the strains. Some strains contained neither element, and one strain carried both. The genome of another strain, WR5, which lacks toxA, was shown to contain a 350-base-pair region that was highly homologous to DNA sequences located just upstream of toxA in other strains. The WR5 genome lacked several kilobase pairs of DNA that was found both upstream and downstream of this homologous region in the other strains.  相似文献   

9.
10.
Sequence organization of the soybean genome   总被引:9,自引:0,他引:9  
The total complexity of one constituent soybean (Glycine max) genome is estimated to be 1.29 . 10(9) nucleotide pairs, as determined by analysis of the reassociation kinetics of sheared (0.47 kilobase) DNA. Single copy sequences are estimated to represent from 53 to 64% of the genome by analysis of hydroxyapatite binding of repetitive DNA as a function of fragment length. From 65 to 70% of these single copy sequences have a short period interspersion with 1.11--1.36 kilobase lengths alternating with 0.3--0.4 kilobase repetitive sequence elements. The repetitive sequences of soybean DNA are interspersed both among themselves and among single copy regions of the genome.  相似文献   

11.
Herpesvirus saimiri is a primate tumor virus that induces acute T-cell lymphomas in New World monkeys. Strains of this virus have been previously classified into three groups on the basis of extreme DNA variability of the rightmost region of unique L-DNA. To compare the oncogenic potentials of various strains, we inoculated New Zealand White rabbits with viruses representing groups A, B, and C of herpesvirus saimiri. The results showed that a group C strain were highly oncogenic in New Zealand White rabbits; however, group A or B viruses were not oncogenic in these rabbits. Analysis of DNAs of tumor tissues and lymphoid cell lines established from tumors showed that the viral genome exists in circular episomal form. To identify which part of the genome of the group C strain is responsible for the highly oncogenic phenotype, group B-C recombinant strains were constructed by an efficient drug selection technique. Two group B recombinant strains in which the right-end 9.2 kilobase pairs of unique DNA is replaced by group C virus DNA were oncogenic in rabbits, indicating that the rightmost sequences contribute to the oncogenic properties of the group C strain. Oncogenicity of herpesvirus saimiri has been traditionally evaluated in New World monkeys; infection of rabbits with group C strain 484-77 offers a much more accessible animal model to study the mechanism of oncogenicity of this virus.  相似文献   

12.
Extrachromosomal DNA obtained from mink cells acutely infected with the Snyder-Theilen (ST) strain of feline sarcoma virus (feline leukemia virus) [FeSV(FeLV)] was fractionated electrophoretically, and samples enriched for FeLV and FeSV linear intermediates were digested with EcoRI and cloned in lambda phage. Hybrid phages were isolated containing either FeSV or FeLV DNA "inserts" and were characterized by restriction enzyme analysis, R-looping with purified 26 to 32S viral RNA, and heteroduplex formation. The recombinant phages (designated lambda FeSV and lambda FeLV) contain all of the genetic information represented in FeSV and FeLV RNA genomes but lack one extended terminally redundant sequence of 750 bases which appears once at each end of parental linear DNA intermediates. Restriction enzyme and heteroduplex analyses confirmed that sequences unique to FeSV (src sequences) are located at the center of the FeSV genome and are approximately 1.5 kilobase pairs in length. With respect to the 5'-3' orientation of genes in viral RNA, the order of genes in the FeSV genome is 5'-gag-src-env-c region-3'; only 0.9 kilobase pairs of gag and 0.6 kilobase pairs of env-derived FeLV sequences are represented in ST FeSV. Heteroduplex analyses between lambda FeSV or lambda FeLV DNA and Moloney murine sarcoma virus DNA (strain m1) were performed under conditions of reduced stringency to demonstrate limited regions of base pair homology. Two such regions were identified: the first occurs at the extreme 5' end of the leukemia and both sarcoma viral genomes, whereas the second corresponds to a 5' segment of leukemia virus "env" sequences conserved in both sarcoma viruses. The latter sequences are localized at the 3' end of FeSV src and at the 5' end of murine sarcoma virus src and could possibly correspond to regions of helper virus genomes that are required for retroviral transforming functions.  相似文献   

13.
14.
We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an "a" sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (gamma(1)34.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses.  相似文献   

15.
We constructed a gene library from a murine cell line with amplified dihydrofolate reductase (dhfr) genes by inserting random segments of DNA into lambda Ch4A. From this library, the dhfr gene and 30 kilobase pairs of surrounding DNA were cloned, and the restriction map was determined. All of the coding regions were sequenced and show that the gene spans a total of 31 kilobase pairs and has five intervening sequences in the coding portion of the gene. In addition, two classes of variant dhfr genes were found in the amplified line, which were amplified and present at levels of 10 to 30% of the normal dhfr genes. Numerous repeated sequences were located throughout the gene region, some of which share homology with previously defied families of repeats.  相似文献   

16.
A family of dispersed repeats longer than 7 kilobase pairs (kbp) has been identified in the very large genome of Lilium henryi, and two subregions cloned. Initially a rapidly reannealing probe (C0t<1 M s) was prepared by hydroxyapatite chromatography. Half the copies of all sequences repeated 15000 times per genome are expected to reanneal by this C0t value. The probe hydridized to abundant fragments of 2, 5, and 7 kbp released from genomic DNA by Bam HI digestion. Twelve 2-kb fragments and ten 5-kb sequences were cloned into pBR322. Restriction mapping of the two sets of clones showed individual members to be quite similar. Length variation was no more than 200 base pairs (bp) between repeats, and consensus sites were present on 80%–90% of occasions. In situ hybridization using representative 2-kbp and 5-kbp clones showed each sequence to be dispersed throughout all chromosomal regions. Studies on the genomic organization suggested that the 2-kbp and 5-kbp sequences are usually adjacent, and that occasional absence of the internal Bam HI site results in the release of the 7-kbP fragment. There are at least 13000 copies of the full repeat per L. henryi genome, thus accounting for approximately 0.3% of the total of 32 million kbp.  相似文献   

17.
The DNA of Pseudomonas aeruginosa rough-specific bacteriophage phi PLS27 was studied. The genome size as determined by summing the sizes of restriction fragments was 42.7 kilobase pairs. Of particular interest was the fact that the DNA was insensitive to certain common restriction endonucleases including EcoRI, BamHI, and HindIII. The ends of the phage DNA were cloned and sequenced, revealing direct repeats of 318 nucleotides. The left end of the genome when cloned into the promoter selection vector pKK232-8 exhibited promoter activity in Escherichia coli. Two promoters bearing greater than 70% sequence homology to the plasmid pNM74 TOL operon and PAK pilin promoters were identified.  相似文献   

18.
ABSTRACT: BACKGROUND: Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. RESULTS: Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. CONCLUSIONS: Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.  相似文献   

19.
20.
Ten murine leukemia virus (MuLV)-related DNA sequences were isolated from C3H/HeN mouse genomic DNA by cloning of EcoRI fragments in a Charon 4A vector. Detailed restriction endonuclease maps of four of the clones were developed by using AKR MuLV [32P]cDNA as a probe. C3H clone 14-9 contains approximately 7 kilobase pairs of MuLV-related DNA, one copy of an MuLV long terminal repeat-like sequence, and a region of flanking mouse DNA. C3H clones 34.2 and 36.1 contain approximately 2 kilobase pairs of MuLV-related DNA, one copy of a MuLV LTR-like sequence, and differing lengths of flanking mouse DNA sequences. C3H clone 8.13 was found to contain an insert of 5.7 kilobase pairs of MuLV-related DNA with two long terminal repeat-like regions and sequences which are partially homologous to AKv-1. Comparison fo the restriction endonuclease cleavage maps of these C3H clones with maps recently developed for ecotropic and xenotropic MuLV DNAs indicates that C3H clone 14-9 corresponds to the 5'-terminal portion of a genomic DNA sequence related to xenotropic MuLVs, whereas C3H clones 34.2 and 36.1 correspond to the 3' terminal portions of genomic DNA sequences related to xenotropic MuLVs. Clone 8.13 represents a deleted, xenotropic MuLV-related provirus. C3H clones 14-9, 34.2, 36.1, and 8.13 provide defined DNA sequence probes with which to characterize the organization and expression of endogenous MuLV-related DNA sequences in the mouse genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号