首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female mate preference for males tending young offspring has been demonstrated in many fishes; however, not much is known about the choice process. Using the barred chin blenny Rhabdoblennius ellipes, a fish with male uniparental care, field experiments were conducted to investigate the female preference for males tending young eggs and then whether females choose the males with young eggs by discriminating young eggs from old eggs in the nests. Males tending young eggs (0‐ to 2‐d old) acquired new eggs nine times more frequently than those tending old eggs (3‐ to 5‐d old) regardless of other traits in males and nests. In the two egg‐switching field experiments (old to young and young to old), contrary to our expectation, male mating success was neither enhanced when given young eggs nor inhibited when given old eggs. These results suggested that females choose males with young eggs not by discriminating the developmental stage of eggs in the nests but by using other choice processes. By choosing males with young eggs, females may benefit from the dilution effects of egg predation and filial cannibalism risks and avoid male parental care failure.  相似文献   

2.
Maternal stress can have long‐term adverse consequences on immunocompetence and disease risk of offspring, and winter survival is a crucial demographic parameter in the life‐history of an individual that can substantially affect northern rodent population dynamics. An understanding of the effects of maternal stress on winter survival of offspring may help identify mechanisms driving population fluctuations of northern small mammals. Thus, we assessed the effects of maternal stress, resulting from high population densities, on winter survival of first generation (F1) and second generation (F2) in root voles Microtus oeconomus. Replicate high‐ and low‐density enclosed parental populations were established, from which we obtained F1 generation that were used to establish new enclosed, equal‐density populations. The adults of the high‐density parental populations had higher corticosterone levels, an indication of physiological stress, than did those of the low‐density parental populations. Over‐winter survival of the F1 generation voles from the low‐density parental populations was greater than that of those from the high‐density parental populations. Over‐winter survival of F2 generation voles did not differ between the two treatments. Our results suggest that maternal stress affected over‐winter survival of first generations but not second generations. Reduced immunocompetence, resulting from high population density stresses, transferred to offspring may be a factor in annual (winter) population declines. Because the effect is transitory, i.e. immunocompetence of F2 voles is not affected, reduced immunocompetence resulting from high density stresses would not contribute to lengthy periods of low population densities that are characteristic of multi‐annual population fluctuations.  相似文献   

3.
Maternal age is generally known to be negatively correlated with the lifespan of offspring in several animal models including yeast, rotifers, flies, and possibly in humans. However, several reports have shown positive effects of parental age on offspring lifespan. Thus, there was a need to investigate further the inconsistent results on the effect of parental age on lifespan. In this study, the effects of parental age on offspring fitness and lifespan were examined by using Drosophila melanogaster. The lifespan of offspring from old parents was significantly increased compared with that of the young counterparts in the Canton‐S (CS) strain but not in other D. melanogaster strains, such as Oregon‐R (OR) and w1118. To find out why the lifespan is increased in the offspring from old parents in CS flies, fitness components that could modulate lifespan were examined in CS flies. Egg weight and body weight were reduced by parental aging and the offspring of old fathers or old mothers developed faster than that of the young. In addition, the offspring of old parents had increased resistance to oxidative and heat shock stresses. However, reproductive capacity, mating preference, and food intake were unaffected by parental aging. These results indicate that parental aging in CS strain D. melanogaster has beneficial effects on the lifespan and fitness of offspring. The presence of strain‐specific manner effects suggests that genetic background might be a significant factor in the parental age effect.  相似文献   

4.
Evolutionary conflict between parents and offspring over parental resource investment is a significant selective force on the traits of both parents and offspring. Empirical studies have shown that for some species, the amount of parental investment is controlled by the parents, whereas in other species, it is controlled by the offspring. The main difference between these two strategies is the residual reproductive value of the parents or opportunities for future reproduction. Therefore, this could explain the patterns of control of parental investment at the species level. However, the residual reproductive value of the parents will change during their lifetime; therefore, parental influence on the amount of investment can be expected to change plastically. Here, we investigated control of parental investment when parents were young and had a high residual reproductive value, compared to when they were old and had a low residual reproductive value using a cross‐fostering experiment in the burying beetle Nicrophorus quadripunctatus. We found that parents exert greater control over parental investment when they are young, but parental control is weakened as the parents age. Our results demonstrate that control of parental investment is not fixed, but changes plastically during the parent's lifetime.  相似文献   

5.
Theoretical models on parental care predict that males should decrease their parental effort when paternity is in doubt. Males may use some cues to assess their certainty of paternity, and try to avoid rearing offspring sired by extra‐pair males. We have previously reported in a socially monogamous passerine, the blue tit (Cyanistes caeruleus), that males decorate their nests with feathers, and that when this ornament is manipulated, males appear to have suspicions about the presence of an intruder male. Here, we decrease the male's certainty of paternity through experimental feather supplementation to analyse whether the outcome of our experiment supports the assumptions of the parental care theory. Male C. caeruleus responded to the feather supplementation experiment by reducing their parental investment (feeding frequency and nest defence) in comparison with control males. The occurrence of extra‐pair offspring in experimental nests was double than that in controls. This suggests that the manipulation was successful not only in altering males' perceived paternity, but also, indirectly, the actual paternity. Furthermore, males that gained extra‐pair young also had a higher than average probability to lose paternity in their nest, which may imply that male C. caeruleus faced a trade‐off between obtaining extra‐pair fertilizations and maintaining paternity in their own nest. Overall, this study supports the idea that males are prone to decrease their parental effort when they perceive that the risk of losing paternity is high. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 552–561.  相似文献   

6.
Trans‐generational immune priming is the transmission of enhanced immunity to offspring following a parental immune challenge. Although within‐generation increased investment into immunity demonstrates clear costs on reproductive investment in a number of taxa, the potential for immune priming to impact on offspring reproductive investment has not been thoroughly investigated. We explored the reproductive costs of immune priming in a field cricket, Teleogryllus oceanicus. To assess the relative importance of maternal and paternal immune status, mothers and fathers were immune‐challenged with live bacteria or a control solution and assigned to one of four treatments in which one parent, neither or both parents were immune‐challenged. Families of offspring were reared to adulthood under a food‐restricted diet, and approximately 10 offspring in each family were assayed for two measures of immunocompetence. We additionally quantified offspring reproductive investment using sperm viability for males and ovary mass for females. We demonstrate that parental immune challenge has significant consequences for the immunocompetence and, in turn, reproductive investment of their male offspring. A complex interaction between maternal and paternal immune status increased the antibacterial immune response of male offspring. This increased immune response was associated with a reduction in son's sperm viability, implicating a trans‐generational resource trade‐off between investment into immunocompetence and reproduction. Our data also show that these costs are sexually dimorphic, as daughters did not demonstrate a similar increase in immunity, despite showing a reduction in ovary mass.  相似文献   

7.
Due to a trade‐off between current and future reproduction, costly reproductive investments should be increased towards the end of a lifespan when the probability of reproduction becomes low (terminal investment hypothesis). We investigated age‐related changes in male reproductive investment towards courtship display and the spermatophore in three age classes (young, middle‐aged and old) of a monandrous moth, Ostrinia scapulalis. As predicted, old males had higher mating success than young and middle‐aged males in no‐choice tests. Moreover, two‐choice tests revealed that middle‐aged males had a higher success rate than young males because of their higher courtship frequency rather than any female preference for them. It was found that old males produced a larger spermatophore than young and middle‐aged males, suggesting greater reproductive effort. The protein content of spermatophores also tended to increase with male age. Despite the age‐related variation in spermatophore size and protein content, age did not affect female fecundity or longevity. A decrease in the number of sperm in the older males might counteract the nutritional benefit of larger spermatophores. Alternatively, fitness components other than longevity and fecundity may be influenced by male age.  相似文献   

8.
Torres R  Drummond H  Velando A 《PloS one》2011,6(11):e27245
Recent studies of wild populations provide compelling evidence that survival and reproduction decrease with age because of senescence, a decline in functional capacities at old ages. However, in the wild, little is known about effects of parental senescence on offspring quality. We used data from a 21-year study to examine the role of parental age on offspring probability of recruitment in a long-lived bird, the blue-footed booby (Sula nebouxii). Offspring probability of recruiting into the breeding population varied over the life of parents and effects age were similar in mothers and fathers. Offspring recruitment was high when parents were roughly 6-12 years old and low before and after then. Effects of parental age on offspring recruitment varied with lifespan (parental age at last reproduction) and previous breeding experience. Offspring recruitment from young and old parents with long reproductive lifespans was greater than that of offspring from parents with short lifespans at young and old ages. For parents with little previous breeding experience recruitment of offspring decreased with their hatch date, but experienced parents were no similarly affected. We found evidence of terminal effects on offspring recruitment in young parents but not in older parents, suggesting that senescence is more likely a gradual process of deterioration than a process of terminal illness. Failure to recruit probably reflects mortality during the first years after independence but also during the fledgling transition to full independence. Our results show effects of parental age and quality on offspring viability in a long-lived wild vertebrate and support the idea that wild populations are composed of individuals of different quality, and that this individual heterogeneity can influence the dynamics of age-structured populations.  相似文献   

9.
Ageing can reduce the probability that individuals reproduce. The present study investigates whether ageing influences the mating frequency of mass‐reared fertile and sterile Mexican fruit flies Anastrepha ludens (Loew). The ability of males of different ages to inhibit female remating is also determined, and the growth of male reproductive organs is measured as they age. Young males (6 days old) have a lower mating frequency than older males, and also have a lower capacity to inhibit female remating than older males. However, 7‐day‐old males are as likely to inhibit female remating as older males. Young males also have smaller reproductive organs than middle‐aged (21‐day‐old) or senescent males (57‐day‐old). These results have implications for the sterile insect technique because sterilized males of A. ludens are released in the field 6 days after emergence. The highest mating frequency, the lowest mating latency and the largest size of testes are observed at 21 days of age. Older males (57 days old) have more sperm in their seminal vesicles than young males (6 and 9 days old). Accessory glands take longer to grow to their complete size compared with testes, and mating frequency is more closely associated with accessory gland size than testes size. Furthermore, there are more sperm in the seminal vesicles during the afternoon period of peak sexual activity than during the morning when sexual activity is absent. These results indicate that, even at the onset of reproductive senescence, mass‐reared males of A. ludens are still capable of mating, as well as inhibiting remating in females.  相似文献   

10.
This study addressed whether there are any age‐related differences in reproductive costs. Of especial interest was whether young individuals increased their reproductive effort, and thereby their reproductive cost, as much as older birds when brood size was enlarged. To address these questions, a brood‐size manipulation experiment with reciprocal cross‐fostering of nestlings of young and middle‐aged female Collared flycatchers, Ficedula albicollis, was performed on the Swedish island of Gotland. Nestlings’ body mass, tarsus length and survival were recorded to estimate the parental ability and parental effort of the experimental female birds. Female survival and clutch size were recorded in the following years to estimate reproductive costs. We found that middle‐aged female flycatchers coped better with enlarged broods than younger females or invested more in reproduction. In the following year, young female birds that had raised enlarged broods laid smaller clutches than the females from all the other experimental groups. This result shows that the young female birds pay higher reproductive costs than the middle‐aged females. Both young and middle‐aged female flycatchers seemed to increase their reproductive effort when brood size was increased. However, such an increase resulted in higher reproductive costs for the young females. The difference in reproductive costs between birds of different ages is most likely a result of insufficient breeding skills of the young individuals.  相似文献   

11.
In Bactrocera oleae females attract males, which is in contrast to the majority of Tephritidae. However, the major component of the secretion of the female rectal ampulla glands, 1,7‐dioxaspiro‐[5,5]‐undecane (DSU), was also isolated from the glands of young males. The DSU produced by females and young males attracts males, but not females. In this study, we investigated the role of the production of DSU in young males. The mating performances of young and old males were evaluated, as well as the male‐male courtships by old males oriented at young and old males. Young males were found not to have a mating advantage. Young males were courted more by other males. Frame‐by‐frame analysis of male wing vibrations showed that this behavior did not differ when oriented at females and young males, highlighting that young males are perceived as females by the courting males. Overall, the production of DSU in young B. oleae males did not seem to be a case of female chemical mimicry. The hypothesis that young olive fruit fly males could benefit indirectly from the DSU production, simply distracting mature males away from females, is discussed.  相似文献   

12.
In principle, parental relatedness, parental age, and the age of parental gametes can all influence offspring fitness through inbreeding depression and the parental effects of organismal and postmeiotic gametic senescence. However, little is known about the extent to which these factors interact and contribute to fitness variation. Here, we show that, in Drosophila melanogaster, offspring viability is strongly affected by a three‐way interaction between parental relatedness, parental age, and gametic age at successive developmental stages. Overall egg‐to‐adult viability was lowest for offspring produced with old gametes of related, young parents. This overall effect was largely determined at the pupa–adult stage, although three‐way interactions between parental relatedness, parental age and gametic age also explained variation in egg hatchability and larva‐pupa survival. Controlling for the influence of parental and gametic age, we show that inbreeding depression is negligible for egg hatchability but significant at the larva–pupa and pupa–adult stages. At the pupa–adult stage, where offspring could be sexed, parental relatedness, parental age, and gametic age interacted differently in male and female offspring, with daughters suffering higher inbreeding depression than sons. Collectively, our results demonstrate that the architecture of offspring fitness is strongly influenced by a complex interaction between parental effects, inbreeding depression and offspring sex.  相似文献   

13.
Reactive oxygen species (ROS) are highly reactive oxygen‐containing molecules associated with aging and a broad spectrum of pathologies. We have previously shown that transgenic expression of the antioxidant enzyme catalase targeted to the mitochondria (mCAT) in mice reduces ROS, attenuates age‐related disease, and increases lifespan. However, it has been increasingly recognized that ROS also has beneficial roles in signaling, hormesis, stress response, and immunity. We therefore hypothesized that mCAT might be beneficial only when ROS approaches pathological levels in older age and might not be advantageous at a younger age when basal ROS is low. We analyzed abundance and turnover of the global proteome in hearts and livers of young (4 month) and old (20 month) mCAT and wild‐type (WT) mice. In old hearts and livers of WT mice, protein half‐lives were reduced compared to young, while in mCAT mice the reverse was observed; the longest half‐lives were seen in old mCAT mice and the shortest in young mCAT. Protein abundance of old mCAT hearts recapitulated a more youthful proteomic expression profile (P‐value < 0.01). However, young mCAT mice partially phenocopied the older wild‐type proteome (P‐value < 0.01). Age strongly interacts with mCAT, consistent with antagonistic pleiotropy in the reverse of the typical direction. These findings underscore the contrasting roles of ROS in young vs. old mice and indicate the need for better understanding of the interaction between dose and age in assessing the efficacy of therapeutic interventions in aging, including mitochondrial antioxidants.  相似文献   

14.
Uniparental offspring desertion occurs in a wide variety of avian taxa and usually reflects sexual conflict over parental care. In many species, desertion yields immediate reproductive benefits for deserters if they can re‐mate and breed again during the same nesting season; in such cases desertion may be selectively advantageous even if it significantly reduces the fitness of the current brood. However, in many other species, parents desert late‐season offspring when opportunities to re‐nest are absent. In these cases, any reproductive benefits of desertion are delayed, and desertion is unlikely to be advantageous unless the deserted parent can compensate for the loss of its partner and minimize costs to the current brood. We tested this parental compensation hypothesis in Hooded Warblers Setophaga citrina, a species in which males regularly desert late‐season nestlings and fledglings during moult. Females from deserted nests effectively doubled their provisioning efforts, and nestlings from deserted nests received just as much food, gained mass at the same rate, and were no more likely to die from either complete nest predation or brood reduction as young from biparental nests. The female provisioning response, however, was significantly related to nestling age; females undercompensated for male desertion when the nestlings were young, but overcompensated as nestlings approached fledging age, probably because of time constraints that brooding imposed on females with young nestlings. Overall, our results indicate that female Hooded Warblers completely compensate for male moult‐associated nest desertion, and that deserting males pay no reproductive cost for desertion, at least up to the point of fledging. Along with other studies, our findings support the general conclusion that late‐season offspring desertion is likely to evolve only when parental compensation by the deserted partner can minimize costs to the current brood.  相似文献   

15.
Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small‐to‐moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small‐to‐moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate‐to‐large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.  相似文献   

16.
The influence of female age on male mating preference and reproductive success has been studied using a promiscuous cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae). In a simultaneous choice test, middle-aged females had significantly greater mating success than young and old females. In single pair trials, when paired with middle-aged virgin males, middle-aged females mated faster, copulated longer, and had greater fecundity and fertility than young or old females, while the longevity of males was not significantly affected by female age. This study on C. bowringi suggests that middle-aged females are more receptive to mating, which can result in the highest male reproductive success.  相似文献   

17.
Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans‐generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans‐generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans‐generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.  相似文献   

18.
19.
Females of many bird species prefer mating with older males, presumably because they provide superior parental care and possibly superior genes. A previous study found that female small tree finches (Camarhynchus parvulus) preferred pairing with old males and had a higher breeding success when paired with old males because their nests were more concealed, higher up in the canopy and therefore less likely to be depredated. However, causes for brood loss have changed over the last decade: predation of small tree finch nests has decreased, whereas brood losses due to parasitism by the invasive parasitic fly Philornis downsi have increased. In the present study, we investigated (a) how the change in predation and parasitism by P. downsi influenced the breeding success of small tree finches, (b) whether there were still differences in breeding success between young and old males, (c) whether P. downsi infestation had a differential effect on nests of young and old males and (d) whether young and old males differed in foraging success. During 2012–2016, we found an overall low influence of predation and a high influence of P. downsi, but neither differed between nests of young and old males. Nests of old males had more fledglings than those of young males. However, the difference in breeding success disappeared when P. downsi numbers were experimentally reduced by injecting an insecticide into nests. This indicates that older males were able to compensate for the detrimental effects of parasitism.  相似文献   

20.
The sterile insect technique (SIT) has been used successfully for the control of fruit flies. The efficiency of this technique can be significantly reduced when sterile released insects are exposed to adverse conditions and predators, as a great number of sterile insects die before reaching sexual maturity and thus fail to mate with wild females. Treatments with juvenile hormone (JH) analogues such as methoprene (M) significantly reduce the time to reach sexual maturity by sterile Anastrepha ludens (Loew) (Diptera: Tephritidae) males. In this study, we compared the sexual performance of non‐treated sexually mature males with young males that had been sexually accelerated with M. Furthermore, we compared the ability of M‐fed males in inhibiting female remating compared with sexually mature males. Results showed that at 5 days M‐fed males had lower mating success than mature males; however, 6‐day‐old (0.1%) M‐fed males had the same amount of matings as mature 13‐day‐old males. Young 5‐ to 10‐day‐old M‐fed males also had similar number of matings as mature non‐treated 12‐ to 17‐day‐old males. There were no differences in copula duration between treatments. Moreover, there were no differences between the fertility, fecundity or refractory period of females mated with either young male fed M or normal sexually mature males. These results indicated that young males that were sexually accelerated with M have the same sexual performance as non‐treated sexually mature males. Implications of using M as a pre‐release treatment for A. ludens controlled through SIT are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号