首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the relationship of breeding birds to elevation across and within four adjacent mountain ranges in the central Great Basin, a cold desert in western North America. Data came from 7 years of point counts at elevations from 1,915 to 3,145 m. We focused on eight passerine species that in this region are associated frequently with Pinus monophylla–Juniperus spp. (pinyon–juniper) woodland. Mean elevation of species' presence differed significantly among mountain ranges for all species except Spizella passerina (Chipping Sparrow); all species except Spizella breweri (Brewer's Sparrow) occurred at the highest mean elevation in the Toquima Range. Observed patterns were consistent with the elevational distribution of pinyon–juniper woodlands that provide nesting and foraging habitat for these species. Across the Great Basin, driven in part by climate change, pinyon–juniper woodland is increasing in density and expanding its distribution at lower elevations. However, breeding habitat for species dependent on mature trees may not be available in expansion woodlands for several decades, and increased tree densities may have negative effects on bird species that are dependent on shrubs within open pinyon–juniper woodlands. Responses of individual species to elevation differed from the response of assemblage-level patterns. Responses to biotic and abiotic variables within guilds of birds are sufficiently diverse, and responses of individual species sufficiently heterogeneous, that one management strategy is unlikely to meet the needs of all species in the group.  相似文献   

2.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

3.
Studies on the impact of climate change on the distributions of bird species in Europe have largely focused on one season at a time, especially concerning summer breeding ranges. We investigated whether migratory bird species show consistent range shifts over the past 55 yr in both breeding and wintering areas or if these shifts are independent. We then analyzed whether patterns in changing migration distances of Finnish breeding birds could be explained by habitat use, phylogeny or body size. We used long‐term datasets from the Finnish ringing centre to analyze the mean wintering latitudes of 29 species of Finnish breeding birds, then used breeding distribution data to make predictions as to whether certain species were migrating shorter or longer distances based on the comparative shifts in the wintering and breeding grounds. Our data reveal species‐specific differences in changing migration distances. We show that for many species, long‐term shifts in wintering ranges have not followed the same patterns as those in the breeding range, leading to differences in migration distances over time. We conclude that species are not adjusting predictably to climate change in their wintering grounds, leading to changing migration distances in some, but not all, species breeding in Finland. This research fills an important gap in the current climate change biology literature, focusing on individuals’ entire life histories and revealing new complexities in range shift patterns.  相似文献   

4.
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt‐out date), the timing of plant phenology and egg‐laying date of the coal tit (Periparus ater). We collected 9 years (2011–2019) of data on egg‐laying date, spring air temperature, snow melt‐out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont‐Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg‐laying date, while at high‐altitude snow melt‐out date was the limiting factor. At both elevations, air temperature had a similar effect on egg‐laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.  相似文献   

5.
Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat characteristics. We therefore developed statistical models of 147 bird species distributions in the eastern United States, using climate, elevation, and the distributions of 39 tree species to predict contemporary bird distributions. We used randomForest, a robust regression‐based decision tree ensemble method to predict contemporary bird distributions. These models were then projected onto three models of climate change under high and low emission scenarios for both climate and the projected change in suitable habitat for the 39 tree species. The resulting bird species models indicated that breeding habitat will decrease by at least 10% for 61–79 species (depending on model and emissions scenario) and increase by at least 10% for 38–52 species in the eastern United States. Alternatively, running the species models using only climate/elevation (omitting tree species), we found that the predictive power of these models was significantly reduced (p<0.001). When these climate/elevation‐only models were projected onto the climate change scenarios, the change in suitable habitat was more extreme in 60% of the species. In the end, the strong associations with vegetation tempers a climate/elevation‐only response to climate change and indicates that refugia of suitable habitat may persist for these bird species in the eastern US, even after the redistribution of tree species. These results suggest the importance of interacting biotic processes and that further fine‐scale research exploring how climate change may disrupt species specific requirements is needed.  相似文献   

6.
Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (?7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant ?10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.  相似文献   

7.
为了了解鸟类组成和海拔分布状况,利用样线法和固定调查点法于2007~2015年对广西大明山的鸟类进行了研究。在大明山共记录鸟类337种,隶属于17目56科。繁殖鸟类(包括留鸟和夏候鸟)共计234种,占大明山鸟类种数的69.4%,具有明显优势,构成了大明山鸟类区系组成的主体。大明山具有典型的华南区向华中区过渡的鸟类区系特征,67.1%的繁殖鸟类属于东洋型的种类。随着海拔的增加,东洋型的种类逐渐减少。依据海拔梯度和植被的不同,可以将大明山鸟类分成6个类群,鸟类总种数和繁殖鸟类种数均以海拔500~900 m的范围内最多,海拔200~500 m范围内鸟类次之。由于大明山地处热带南缘,本研究将为今后监测气候变暖对鸟类的影响提供依据。  相似文献   

8.
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.  相似文献   

9.
Aim Local‐scale processes at species distribution margins can affect larger‐scale distribution dynamics, but are rarely studied. The objective of this research was to elucidate the nature of distribution limits by studying the comparative structure, dynamics and environmental associations of breeding bird populations at their distribution margin. We hypothesized that climate is principally responsible for setting distribution limits, whereas biotic habitat features are more strongly associated with distribution patterns within the range. Location Southern California, USA. Methods During 2005–2007 we studied the distribution patterns of breeding birds in three study areas, each spanning a low‐elevation (200–1800 m) desert scrub‐to‐chaparral gradient. We used logistic regression with hierarchical partitioning to assess the independent effects of environmental variables (e.g. climate versus habitat) on distributions. We tested for shifts in the relative importance of these environmental variables in determining distribution limits versus within‐range patterns, and we also compared higher‐ and lower‐elevation groups of species. Results Distribution patterns were highly variable among species, but were remarkably static over the three study areas and 3‐year study period. Across species, habitat floristic variables performed relatively well at explaining distribution patterns. For higher‐elevation species (chaparral birds), climate was relatively important in setting their lower distribution limits, and there was a shift to a greater importance of biotic habitat (mainly habitat structural variables) for determining within‐range patterns. Relationships were more mixed for lower‐elevation species (desert scrub birds), but with respect to distribution limits, biotic habitat variables tended to be more important relative to climate than we observed for chaparral birds. Main conclusions Along this warm, arid elevational gradient, higher‐elevation chaparral birds are more limited by climate at their lower margin than are lower‐elevation desert birds at their upper margin, suggesting that climate plays a strong role (relative to other values) in excluding non‐desert birds from desert. However, given the strong differences among species, predictive distribution models will need to be individually tailored, and for most species biotic habitat variables were of greater importance than climate in determining limits. This research highlights the usefulness of studying environmental relationships at distribution margins and the importance of considering biotic relationships in forecasting distribution shifts under changing climates.  相似文献   

10.
Aim Apparent anthropogenic warming has been underway in South Africa for several decades, a period over which significant range shifts have been observed in some indigenous bird species. We asked whether these range shifts by birds are clearly consistent with either climate change or land use change being the primary driver. Location South Africa. Methods We categorized recent range changes among 408 South African terrestrial bird species and, using generalized linear mixed models, analysed ecological attributes of those species that have and have not changed their ranges. Results Fifty‐six of the 408 taxa studied have undergone significant range shifts. Most extended their ranges towards the south (towards cooler latitudes, consistent with climate‐change drivers) or west (towards drier and warmer habitats, inconsistent with climate drivers but consistent with land use drivers); very few moved east or north. Both southward and westward movers were habitat generalists. Furthermore, southward movers were mobile taxa (migrants and nomads), whereas westward movers were associated with human‐modified elements in the landscape, such as croplands, plantations or buildings. Main conclusions The results suggest that both land use changes and climate change may simultaneously be influencing dynamic range shifts by South African birds, but separating the relative strengths of these two drivers is challenging, not least because both are operating concurrently and may influence some species simultaneously. Those species that respond to land use change by contracting their ranges are likely to be among the species that will be most impacted by climate change if land use practices with negative impacts are occurring in areas anticipated to become climatic refugia for these species. This highlights a pressing need to develop dynamic models of species’ potential range shifts and changing abundances that incorporate population and dispersal processes, as well as ecological processes that influence habitat suitability.  相似文献   

11.
There is increasing evidence that global climate change will alter the spatiotemporal occurrences and abundances of many species at continental scales. This will have implications for efficient conservation of biodiversity. We investigate if the general public in Denmark are willing to pay for the preservation of birds potentially immigrating and establishing breeding populations due to climate change to the same extent that they are for native species populations currently breeding in Denmark, but potentially emigrating due to climate change. We find that Danish citizens are willing to pay much more for the conservation of birds currently native to Denmark, than for bird species moving into the country – even when they are informed about the potential range shifts associated with climate change. The only exception is when immigrating species populations are under pressure at European level. Furthermore, people believing climate change to be man-made and people more knowledgeable about birds tended to have higher WTP for conservation of native species, relative to other people, whereas their preferences for conserving immigrant species generally resembled those of other people. Conservation investments rely heavily on public funding and hence on public support. Our results suggest that cross-country coordination of conservation efforts under climate change will be challenging in terms of achieving an appropriate balance between cost-effectiveness in adaptation and the concerns of a general public who seem mostly worried about protecting currently-native species.  相似文献   

12.
Aim To test whether bird assemblages are shifting upwards in their elevational distribution in synchrony with current climate warming and/or habitat changes. Location A gradient of elevation in the Italian Alps (Alta Valsessera, Piedmont). Methods We used data from two recent atlas surveys performed on a 1 × 1 km grid at an 11‐year interval (1992–94 and 2003–05). We modelled the elevational gradient of avifaunal composition, using a sample‐based approach, in an effort to detect evidence for an upward elevational shift of bird zonation. Changes in species richness were controlled for. The results from this analysis were compared with those obtained using a species‐based approach. Changes in climate and landscape between the two surveys were assessed using local meteorological data and Corine Land Cover maps, respectively. Results We detected small avifaunal changes between the two surveys: (1) mean elevations increased for the majority of species, but the average change was not significantly different from zero; (2) the species richness increased, but this was mainly due to an increase in sampling effort; and (3) a change in species composition was detected, which was at the limit of significance and corresponded on average to a 29‐m upward elevational shift in the distribution of the avifauna. The shift was the same for open land and forest bird communities. During the same period, the mean temperature increased by c. 1 °C in the area, and a slight trend towards vegetation closure by woody plants was detected. Main conclusions The use of fine‐scale breeding bird atlases in mountainous regions, together with ordination methods, provides a sensitive tool to test and measure elevational shifts in species ranges, but the results have to be interpreted carefully. In our case, the observed elevational shift in the distributions of the avifauna cannot unambiguously be attributed to climate warming. This shift is smaller than expected from the regional increase in temperature, which raises the question of how closely bird distributions match climate change.  相似文献   

13.
The upper altitude ecosystems of the Andes are among the most threatened by climate change. Computer models suggest that a large percentage of species in these ecosystems will be at risk of extinction and that avian communities will suffer disruption and impoverishment. Studies in other Andean countries lend some support to these predictions, but there are no quantitative data from Colombia appropriate to test these models. In 1991–1992, we conducted a bird survey in a high Andean cloud forest to gather information about the species present and their abundance. We attempted to replicate this earlier study 24 yr later to detect any changes in the avifauna and determine possible causes for those changes. From June 2015 to May 2016, we made bimonthly trips to the study site and identified all birds detected either visually or by voice along a number of trails. We supplemented our observational data by also capturing birds in mist‐nets. Community species richness and composition as well as the overall abundance of birds changed little from 1991–1992 to 2015–2016, but nearly 30% of bird species changed in abundance. Changes in the presence or abundance of nine or 10 species reflected upward shifts in elevational limits potentially due to climate change. However, most changes in abundance appeared to reflect changes in the vegetation of the study area due to successional changes in forest and subparamo habitats and a large number of relatively recent treefalls of old canopy trees with heavy epiphyte loads and subsequent changes in the understory vegetation. Our results suggest that the effects of climate change on the avifauna in our study area at a high‐altitude site in Colombia are apparently occurring more slowly than predicted by recent computer models, although we conclude that the possible effects of climate change should definitely be considered in future studies. However, single‐site studies such as ours have limitations in documenting elevation shifts; the most conclusive and quantitative evidence for elevational shifts comes from long‐term studies conducted over a wide range of elevations. As such, we recommend establishment of such a monitoring program in Colombia because data obtained from such a program might be important in designing measures to mitigate the effects of climate change and conserve biodiversity.  相似文献   

14.
The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate‐driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate‐driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change.  相似文献   

15.
Global climate change has been shown to cause variable shifts in phenology in a variety of animals and unexpected outcomes across food chains are to be found. Here we examined how rising annual spring temperatures affected the interactions between seed masting, cavity nesting birds and dormice using long-term data from Eastern Czech Republic. We have shown that climate change was associated with unequal shifts in the phenology of two cavity-breeding groups: dormice and birds. Rising spring temperatures have progressively advanced the termination of hibernation for the edible dormouse Glis glis , a common bird predator, leading to an increasing overlap in the use of nesting boxes between dormice and birds. In contrast, only the collared flycatcher Ficedula albicollis , of the four cavity-nesting bird species, advanced its breeding dates in response to rising temperatures. At the same time, favourable weather conditions, coupled with good seed masting years, have been associated with a substantial rise in dormice numbers. Concurrent with the increasing dormice abundance, the number of bird nests destroyed significantly increased in three out of four bird species. We showed that while there was a significant change in the date that the dormice emerged from hibernation during the course of the study, it did not significantly contribute to predation levels when controlling for their abundance and timing of breeding in birds. We found that the increasing dormice abundance was the main factor causing high brood losses in birds, while the timing of breeding in birds had a variable effect between bird species. This study illustrates how changes in climate might affect organisms at various trophic levels with often unexpected outcomes. Limited evidence from other study organisms suggests that species most at risk are those at different trophic levels that do not shift at the same rate or in the same direction as their food resources, predators or competitors.  相似文献   

16.
There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence–absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south–north gradient in Finland, that between 1970–1989 and 2000–2012, 128 bird species shifted their densities, on average, 37 km towards the north north‐east. The species‐specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north‐east (186 km), the species‐specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species‐specific characteristics and human land‐use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north‐west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.  相似文献   

17.
In mountain ecosystems, species can be said to respond synchronously to environmental change when the elevation ranges of vegetation types and their associated vertebrates expand or contract in the same direction. Conversely, the response is asynchronous when the elevation ranges of vegetation types and associated vertebrates change in different directions. The capacity of vertebrate species to respond synchronously with change in the elevation ranges of the vegetation that comprises their habitat is likely a function of their ecological traits. Here we combine measures of elevation range shifts in 23 vertebrate species with those of their associated vegetation types across 80 yr, on a large elevation transect in California's Sierra Nevada mountains that encompasses Yosemite National Park. Half the species’ shifts were synchronous with vegetation shifts, ¼ of the species were asynchronous, and the others showed no relationship. Most species that responded synchronously to changes in vegetation elevation ranges expanded their elevation range, and are inhabitants of low and intermediate elevations. In contrast, those species whose range shifts were asynchronous to associated vegetation shifts inhabit high elevations. These species experienced contraction in elevation range even while their associated vegetation types expanded. However, these species were responding synchronously to a subset of their associated vegetation types. Considering trait‐based predictors, omnivores were more synchronous than herbivores. Our results on synchronous and asynchronous elevation shifts with vegetation may permit more accurate modeling of future ranges for vertebrates in California's Sierra Nevada. The approach also offers a new method for use in assessment of vertebrate vulnerability in other mountain regions, and can be an important component of assessing their vulnerability to climate change.  相似文献   

18.
An upward shift in elevation is one of the most conspicuous species responses to climate change. Nevertheless, downward shifts and, apparently, the absences of response have also been recently reported. Given the growing evidence of multiple responses of species distributions due to climate change and the paucity of studies in the tropics, we evaluated the response of a montane bird community to climate change, without the confounding effects of land‐use change. To test for elevational shifts, we compared the distribution of 21 avian species in 1998 and 2015 using occupancy models. The historical data set was based on point counts, whereas the contemporary data set was based on acoustic monitoring. We detected a similar number of species in historical (36) and contemporary data sets (33). We show an overall pattern of no significant change in range limits for most species, although there was a significant shift in the range limit of eight species (38%). Elevation limits shifted mostly upward, and this pattern was more common for upper than lower limits. Our results highlight the variability of species responses to climate change and illustrate how acoustic monitoring provides an easy and powerful way to monitor animal populations along elevational gradients.  相似文献   

19.
Climate change is expected to lead to upslope shifts in tree species distributions, but the evidence is mixed partly due to land‐use effects and individualistic species responses to climate. We examined how individual tree species demography varies along elevational climatic gradients across four states in the northeastern United States to determine whether species elevational distributions and their potential upslope (or downslope) shifts were controlled by climate, land‐use legacies (past logging), or soils. We characterized tree demography, microclimate, land‐use legacies, and soils at 83 sites stratified by elevation (~500 to ~1200 m above sea level) across 12 mountains containing the transition from northern hardwood to spruce‐fir forests. We modeled elevational distributions of tree species saplings and adults using logistic regression to test whether sapling distributions suggest ongoing species range expansion upslope (or contraction downslope) relative to adults, and we used linear mixed models to determine the extent to which climate, land use, and soil variables explain these distributions. Tree demography varied with elevation by species, suggesting a potential upslope shift only for American beech, downslope shifts for red spruce (more so in cool regions) and sugar maple, and no change with elevation for balsam fir. While soils had relatively minor effects, climate was the dominant predictor for most species and more so for saplings than adults of red spruce, sugar maple, yellow birch, cordate birch, and striped maple. On the other hand, logging legacies were positively associated with American beech, sugar maple, and yellow birch, and negatively with red spruce and balsam fir – generally more so for adults than saplings. All species exhibited individualistic rather than synchronous demographic responses to climate and land use, and the return of red spruce to lower elevations where past logging originally benefited northern hardwood species indicates that land use may mask species range shifts caused by changing climate.  相似文献   

20.
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号