首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鲤胚胎孵化腺细胞   总被引:5,自引:1,他引:4  
鲤胚胎孵化腺为单细胞腺体,发生于外胚层,可特异地被PAS染色。最早可在眼色素期检验出孵化腺细胞(Hatching gland cell,HGC)它们主要分布在头部腹面及头部与卵黄囊连接处。开始,HGC位于表皮细胞下面,随发育迁移到胚胎表面。根据扫描和透射电镜观察,在分泌孵化酶的前后,HGC区表面细胞呈鸡冠花状和疣状两种突起。前者系HGC处于分泌孵化酶期间;后者系HGC业已完成分泌作用,由于相邻的表皮细胞活动而形成的。HGC内富有粗面内质网、线粒体、核糖体和高尔基体,并由后者合成酶原颗粒。HGC在完成分泌作用后,仍留在表皮中,以后逐渐退化,但在孵化后30h仍可见残留的HGC。  相似文献   

2.
When cells of the superficial layer explanted from the presumptive ectoderm of a Rana japonica early gastrula embryo at stage 10 were cultured in standard salt solution for 4–7 days, they differentiated into cement gland cells (CGCs), cilia cells (CCs) and common epidermal cells (CECs). When, however, these explants were treated with LiCl and transferred to Barth's solution, hatching gland cells (HGCs) and pigment cells were induced.
The optimum condition for inducing differentiation of HGC was treatment with 70 mM LiCl for 6–8 hr at 18°C. The best ability to react to the HGC-inducing stimuli resided in the superficial layer of the dorsal presumptive epidermis of the embryo at stage 10. Upon repeated stimulation, explants from stage 8 embryos underwent differentiation into nerve and pigment cells, whereas those from stage 11 embryos differentiated into CCs and CECs. Under optimum conditions, the total volume of HGCs induced amounted to about 70% of the explanted tissue. The culture media from LiCl-induced HGCs showed an apparent jelly-digesting activity, strongly indicating that the cells were functionally identical with those differentiated in situ .  相似文献   

3.
草鱼孵化腺超微结构及孵化酶形成与释放的研究   总被引:5,自引:0,他引:5  
草鱼胚胎孵化腺为单细胞腺体,发生于外胚层,主要分布在胚胎头部及头部与卵黄囊连接处,尤以眼睛腹下方最多且典型。其形成、释放酶的过程具有一定的规律性,可划分为5个时期:形成前期、迁移期、分泌期、衰退期和消失期。畸形胚胎头部表皮细胞中很少有HGC的分化或HGC分化不完全,其形态结构也呈现畸形。    相似文献   

4.
Antibodies against purified hatching enzyme (HE) from the pike, Esox lucius L., have been used to examine different aspects of the presence of the enzyme in the ontogeny of this teleostean fish. Immunochemical analysis indicates that the two proteolytic enzymes which occur in the hatching medium arise from a single protease, HE itself. The second proteolytic fraction found in gel filtration of hatching medium could be a heterogeneous population of complexes of HE with digestion fragments of its natural substrate, the zona radiata. Immunofluorescence microscopy by means of anti-HE antibodies demonstrates that HE is localized in the so-called hatching gland cells (HGCs). The HGCs in pike appear as oval to round cells 10–15 μm in diameter containing granules of 1.5–2.3 μm. They are found interspersed between the periderm and the presumptive epidermis. The number of HGCs and their granule content increase significantly until the 35-somite stage to reach about 1200 and 30, respectively. From then on these numbers do not change until hatching in the 66-somite stage. The distribution of the HGCs over the embryo also changes, probably since HGC precursors in the yolk sac differentiate to HGCs later than their counterparts in the head region. The immunocytochemical procedure further shows that HE can be detected from the 10-somite stage on. Discrete hatching gland remnant bodies, phagocytized by epidermal cells, are observed in larval stages until 3–7 days after emergence of the embryo.  相似文献   

5.
Summary Around hatching, when the pike embryo sheds its acellular egg envelope, marked changes occur in the cellular covering of the embryo. This cellular covering consists of a peridermal layer and a mono-layered presumptive epidermis. The periderm begins to disintegrate shortly before hatching and is sloughed off in the first posthatching period. The cellular covering produces hatching enzyme, the protease that partly dissolves the zona radiata interna of the acellular envelope. By means of the peroxidase-anti-peroxidase staining method with antibodies against hatching enzyme the cells producing this enzyme (hatching gland cells, HGCs) could be identified ultrastructurally. They are interspersed as single cells between the periderm and the presumptive epidermis. The secretory cycle of the HGC was studied. Hatching enzyme is released by an exocytotic secretory process in which multiple secretion into a secretion vacuole predominates. Exocytosis into surrounding intercellular spaces also occurs. These results show that the HGCs are merocrine glands. The HGC also has some holocrine nature, however, in that only a single, massive release of its secretory product occurs. The death of the transitory HGCs in posthatching stages is characterized by condensation of the cell, formation of surface protuberances and splitting up into globular cell fragments. Eventually these fragments are ingested by epidermal cells and digested. These results lead to the conclusion that the pike HGCs degenerate by apoptosis, unlike true holocrine cells.  相似文献   

6.
Cell proliferation was examined during early embryogenesis of the newt ( Triturus pyrrhogaster ) by various methods. After the two-cell stage, at 23°C, the blastomere (cell) number per whole embryo increased logarithmically until the mid-blastula stage (for about 19 hr) and the rate of increase slowed down in and after the late blastula stage. On the other hand, the synchronous cleavage of the blastomeres at the animal pole continued for 18 hr until the twelfth cleavage (mid-blastula) and the transition from synchronous to asynchronous division occurred abruptly at and after the thirteenth cell division (late blastula). The study also showed that the presumptive neuro-ectoderm consisted mainly of cells of the fifteenth generation (G-15) at the onset of gastrulation (pigment stage).
The present study suggested that the number of ectodermal cells of the early gastrula (stage 12a) nearly doubled during gastrulation at the presumptive neuro-ectoderm. This means that most of the ectodermal cells are in G-16 at the end of gastrulation. On the other hand, both mitotic activity and the rate of cell increase gradually diminished during gastrulation in the ectoderms of both the presumptive neural and epidermal regions, and there are evidently significant differences in both activities between the neuro-ectoderm and the epidermal ectoderm after stage 13b: the epidermal ectoderm showed greater decrease in the rate of both mitotic activity and cell proliferation than the neuro-ectoderm.
These facts suggested that, whether the ectodermal cells will differentiate into neural cells or epidermal cells is determined during G-15 or G-16 in normal primary induction.  相似文献   

7.
In vivo ciliogenesis in human fetal tracheal epithelium   总被引:5,自引:0,他引:5  
Development of ciliated cells (CC) in the fetal human trachea was studied by light and electron microscopy in specimens obtained from 45 embryos or fetuses aged from 9 to 27 weeks of gestation (menstrual age). Four stages could be recognized during tracheal development. Up to 11 weeks (stage I), the trachea was covered with a columnar undifferentiated epithelium with abundant glycogen, apical microvilli, and primary cilia. From 12 to 18-19 weeks (stage II), centriologenesis and secondary ciliogenesis were very active, and the percentage of CC and secretory cells (SC) progressively increased. From 20 to 22-23 weeks, the density of CC was higher but, in parallel, the percentage of SC decreased (stage III). Throughout this period, the different steps of ciliogenesis could be identified in the same field, and the ciliated borders consisted of ciliary shafts with a disorderly arrangement. Megacilia were identified. Some of the preciliated cells had both cilia and secretory granules in their apical cytoplasm. After 24 weeks (stage IV), the ciliated border was apparently mature, the rootlets lengthened, and the cilia were correctly orientated. Whatever the fetal age, the density of CC was significantly higher (P less than .01) in the dorsal trachea compared to the ventral trachea. There are many similarities between animal and human ciliogenesis, but in human fetuses, most of the ciliary differentiation occurs early, during the first half of gestation. As demonstrated in experimental models, SC likely play a major role in genesis of CC during the fetal development of the human trachea.  相似文献   

8.
The embryonic hatching process in the toad, Bufo japonicus , consists of two phases: rupture of the outer jelly strings at stage 20 (neural tube) and an escape from the inner jelly layers and fertilization coat (FC) of individual embryos at stage 23 (tailbud). SDS-PAGE analyses of FCs revealed that, of the eight major protein bands, two components with 58 K and 62 K in molecular weight gradually decreased from stage 18–19 on and totally disappeared at stage 22. When the FCs were treated with a hatching medium prepared by culturing denuded prehatching embryos, both 58 K and 62 K components of the FCs were solubilized, and in the solubilized materials 18 K and 31 K components appeared. Electron microscopy showed that a meshwork of filament bundles present in the FCs before stage 17 became dissociated at stage 19–20, and completely disappeared at stage 23, just before the hatching of embryos. Hatching gland cells (HGCs), an epidermal cell with numerous secretory granules, were first identified at stage 19, and underwent active secretion of the granules during stage 19–23. These results indicate that the hydrolytic degradation of 58K and 62 K components in FCs effected by the hatching enzyme constitutes the basic mechanism of embryonic hatching during both the first and second phases.  相似文献   

9.
Summary A polyclonal antibody (SP-2) has been produced, which recognizes antigens expressed in epidermal cells of Pleurodeles waltlii embryos. The antigens appear first at the end of gastrulation in the external surface of the embryo and are selectively expressed in ectodermally derived epidermal structures. Ectodermal commitment was investigated using cell cultures and blastocoel graft experiments. The four animal blastomeres of the 8-cell stage as well as the animal cap explants of the early gastrula stage cultured in vitro differentiate into epidermis, and SP-2 antigens are expressed. The expression of SP-2-defined antigens is inhibited both in vivo and in vitro by the inductive interaction of chordomesoderm. Once dissociated, ectodermal cells do not react with SP-2. Conversely, the aggregation of ectodermal cells may restore the expression of SP-2 antigens. Transplantation of animal cap explants or isolated ectodermal cells into the blastocoel of a host embryo at the early gastrula stage shows that only cells integrated into the epidermis express the marker antigens. When vegetal cells were dissociated from donor embryos before the mid-blastula stage and implanted into the blastocoel of host embryos at the early gastrula stage, their progeny were found in all germ layers, cells that were found in the host epidermis were stained with SP-2, whereas those contributing to mesoderm and endoderm were not. Thus the acquisition of cell polarity in epidermal differentiation and the organization of cells into epithelial structures are essential for SP-2-defined antigen expression.  相似文献   

10.
Prospective skin prior to invasion by neural crest cells was dissected from 10.5-day mouse embryos and cultivated in chick embryo hosts. The graft tissue was prepared for the demonstration of both mouse and chick cells, pigment cells, and Langerhans cells. Chick cells were not found in the graft mouse epidermis; however, ATPase-positive and osmium iodide-positive cells were present. Electron microscopic examination revealed that, in younger grafts, only indeterminate cells could be found among the keratinocytes. In older grafts, both indeterminate cells and Langerhans cells with granules were seen. The evidence affirms that epidermal Langerhans cells are not related to pigment cells.Based on the developmental nature of Birbeck (Langerhans) granules from the cytomembrane, it is proposed that the granule no longer be considered as specific to and characteristic of epidermal Langerhans cells. Rather, Langerhans cells should be defined as ATPase-positive, desmosome-free cells within stratified squamous, potentially keratinizing, epithelia. Thus epidermal, ATPase-positive indeterminate cells and such cells with Birbeck granules both should be considered as components of the Langerhans cell series.Normal chick skin does not show ATPase-positive cells. However, when 10.5-day mouse embryo ectoderm was inserted under the ectoderm of chick embryos, the resulting chimeric epidermis possessed ATPase-positive cells. It is proposed that epidermal Langerhans cells are of ectodermal origin.  相似文献   

11.
The intraepidermal innervation of the snout skin of the opossum has been studied with the light and electron microscope. Numerous large nerve fibers loose their myelin sheath in the superficial dermis and pass into the epidermis. The basement membranes of the epidermis and Schwann cell become continuous at the point of entry of the neurite into the epidermis. Within the epidermis, the neurite is associated with a specialized secretory epidermal cell, termed a Merkel cell. This cell has many secretory granules apposed to the neurite. The Merkel cells are epidermal cells since they have desmosomes between them and adjacent epidermal cells. The neurite in the stratum spinosum is enveloped by Schwann cells in a manner analogous to the Schwann cell investment of unmyelinated neurites. In the upper stratum spinosum the nerve fiber evidences changes which can be interpreted as degenerative. The Merkel cell-neurite complex is interpreted as representing a sensory receptor unit.  相似文献   

12.
Theta cells reported previously as a new cell type in the anterior pituitary of the mouse were examined with the electron microscope. This type of cell is distinguished by the presence of pleomorphic secretory granules, a characteristic arrangement of the rough surfaced variety of endoplasmic reticulum, a well developed Golgi complex, and an eccentrically located nucleus. The secretory granules are seen at first as small granules of low density within the Golgi vesicles. While they are within the Golgi vesicles they become larger and denser. Simultaneously they move from the proximal to the distal part of the Golgi region and finally emerge from the Golgi area as mature granules in the cytoplasm. Thus, secretory granules are always enveloped by a limiting membrane which originates from the wall of the Golgi vesicle. At the stage of granule-extrusion, the cell membrane fuses with the limiting membrane of the granules and openings in the cell membrane appear at the place of extrusion. The granules then appear to lie within inpocketings of the cell membrane. They lose their density within these inpocketings or within the cytoplasm and occasionally show fragmentation. After complete loss of density, the granules are extruded as amorphous materials to the territory outside of the cell.  相似文献   

13.
Cotyledon explants from zygotic embryos of Panax ginseng produced somatic embryos on Murashige and Skoog basal medium without growth regulators. Somatic embryos developed directly from epidermal cells at the cotyledon base. Somatic embryos were always formed from the side of the cotyledon opposite to the one attached to the medium surface regardless of cotyledon orientation. The frequency of somatic embryo formation from the abaxial epidermis (66%) was much higher than that from the adaxial epidermis (12%). Differences in embryogenic response were likely related to cell structure. Abaxial epidermal cells were filled with reserve materials (lipid bodies), while adaxial epidermal cells were devoid of any prominent reserves. During germination, the reserve materials in the cells of the cotyledons disappeared rapidly. At the same time, the competency of somatic embryo formation from cotyledon explants declined rapidly to zero. Upon culture of the cotyledon explants (for somatic embryo induction), lipid bodies slowly disappeared, but starch grains accumulated prominently. Reserve materials disappeared after commencement of embryogenic cell division. During germination, lipid bodies rapidly disappeared, and chloroplasts developed instead of starch grains. Received: 29 January 1997 / Revised version received: 16 April 1997 / Accepted: 9 May 1997  相似文献   

14.
T Hirano  H Horigome  H Ishishita  S Uda  K Oka 《Life sciences》2001,68(26):2905-2916
11Beta-hydroxyglucocorticoids (HGCs) are known to induce apoptosis in immature T cells. Here we show that 11-oxoglucocorticoids (OGCs), which are oxidized metabolites of HGCs, counteract the apoptosis-inducing effects of HGC in murine thymocytes in vitro. Corticosterone at concentrations ranging from 0.1-100 microM induced apoptosis in thymocytes obtained from C57BL/6J mice aged 4 weeks, as demonstrated by cell staining with anti-phosphatidylserine antibody, a decrease in mitochondrial membrane potential, and DNA fragmentation. Co-culture of the cells with 10-100 microM of OGCs, dehydrocorticosterone, cortisone, and prednisone significantly inhibited thymocyte apoptosis induced by 1 microM corticosterone, (p<0.006). Among the other 6 physiological metabolites of the HGCs we tested, 20alpha-dehydrocortisol also showed considerable inhibitory effect on corticosterone-induced thymocyte apoptosis. Corticosterone-treatment of thymocytes in vitro decreased the number of CD4 and CD8 double positive cells, while co-culturing the cells with dehydrocorticosterone significantly attenuated this corticosterone effect (p<0.0001). Numbers of double-negative cells and single-positive cells were not significantly affected by corticosterone, dehydrocorticosterone, or both together. These results raised the possibility that OGCs and probably other HGC metabolites can regulate apoptotic cell death of immature double-positive thymocytes induced by HGC.  相似文献   

15.
Lectin binding pattern in the developing chick embryonic epidermis was studied using peroxidase labeling method. The epidermis of the 13-day-old embryo is in an undifferentiated state. Little binding of soybean agglutinin (SBA), specific for N-acetyl-D-galactosamine, and peanut agglutinin (PNA), specific for β-D-galactose, was seen in such epidermal cells. As the epidermis developed toward keratinization, the cell membrane of the differentiating flattened cells was positively stained with SBA and PNA. The positive staining was also seen in the supranuclear region of the cells located between the flattened cells and the basal cells. The basal cells remained unstained in all the stages of development. Similar staining pattern with SBA and PNA was seen in the cultured skin explants during the epidermal differentiation in vitro. These observations show that the SBA- and PNA-reactive glycoconjugates accumulate during the epidermal cell differentiation, suggesting their important roles in the maintenance of the ordered structure of the epidermis.  相似文献   

16.
NEURAL COMPETENCE AND CELL LINEAGE OF GASTRULA ECTODERM OF NEWT EMBRYO   总被引:1,自引:1,他引:0  
The change in the capacity to form neural structures was quantitatively analyzed in both intact and isolated ectoderms of Cynops pyrrhogaster gastrula. The frequency of explants with induced neural structures abruptly decreases between stage 12c and stage 13b in intact ectoderm, and between 12 hr and 18 hr preculture in isolated ectoderm. The quantitative analysis also made clear that the size of the cell population of induced neural structures was gradually reduced with the aging of the ectoderm. The authors simultaneously examined the cell proliferation of early gastrula ectoderm and confirmed that all ectodermal cells divided at least once within 18 hr at 23°C, after which the neural competence of the ectoderm completely disappeared.
The relationships between neural competence and cell lineage (cell generation) of the ectoderm are discussed in the light of these findings.  相似文献   

17.
18.
Two-dimensional gel electrophoresis was used to analyze protein synthesis in relation to neural and epidermal differentiation in Cynops pyrrhogaster embryo. Various regions of embryos at different developmental stages, from late morula to early neurula stages, were excised, radiolabelled with 35S-methionine, and the pattern of protein synthesis were compared. The following four types of protein spots were observed: (1) six proteins synthesized characteristically in the epidermal region of the embryo after gastrulation, (2) two proteins synthesized in both epidermal and endodermal regions, but not in other regions, after gastrulation, (3) a protein first detected at early blastula stage, of which expression was nearly constant in presumptive epidermis region but declined in the other regions, (4) the candidate for neural plate specific protein synthesized at a very high level in ectoderm explants treated with concanavalin A, a substance which evokes neural induction.  相似文献   

19.
CELL SORTING IN THE PRESENCE OF CYTOCHALASIN B   总被引:1,自引:1,他引:0  
The ability of cytochalasin B to inhibit ruffled membrane activity and cellular locomotion of vertebrate cells in monolayer culture prompted its use to study the necessity for this kind of active cellular locomotion in cell sorting in heterotypic cell aggregates. Cell sorting was inhibited in chick embryo heart-pigmented retina aggregates but a remarkable degree of sorting did occur in neural retina-pigmented retina aggregates. In these experiments, the levels of cytochalasin B employed (5 or 10 µg/ml) are sufficient to inhibit completely locomotion of these cell types in monolayer culture. It is proposed that the degree of cell movement achieved during sorting in neural retina-pigmented retina aggregates in the presence of cytochalasin B is the result of changes in cell contact resulting from adhesive interaction of cells. The effect of cytochalasin B on the initial aggregation of dissociated cells was also tested. With the cell types used in this study (chick embryo neural retina and limb bud), aggregation was not affected for a period of several hours.  相似文献   

20.
动物孵化酶(hatching enzyme,HE)是早期胚胎在特定发育阶段由孵化腺细胞产生和分泌的,在动物早期胚胎孵化中具有关键性作用。孵化腺细胞(hatching gland cell,HGC)一般为单细胞腺体,是从胚胎发育到特定阶段(孵化前)出现、至胚胎孵出后的特定时期消失的一时性细胞(transient type ofcells)。完全分化的HGC内充满了低电子密度的酶原颗粒(孵化酶原颗粒),在鱼胚中的分布因物种而异。在大多数鱼中,HGC分布在胚体的外表面和/或卵黄囊中,一般为外胚层来源。如在虹蹲鱼HGC分布在胚体的前表面、卵黄囊、咽部、鳃的内表面及外表面,属于外胚层来源。而日本鳉鱼HGC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号