共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated a mutant of Rhodopseudomonas spheroides that grows normally under photosynthetic conditions but is unable to grow exponentially under aerobic conditions. Photosynthetically grown cultures of the mutant increase in mass and cell number for about 10 hr after transfer to aerobic conditions. During this time, no heme pigments are synthesized and the Q(O(2)) declines. In the mutant, synthesis of heme pigments is obligatorily coupled to synthesis of bacteriochlorophyll. 相似文献
2.
Using a novel screening procedure, we have selected a new class of mutant from the cyanobacterium Synechococcus PCC7942 that fails to adapt to growth at an extremely low inorganic carbon (Ci) concentration. The mutant (Tm17) reported in this study grows normally at or above air levels of CO2 (340 [mu]L L-1) but does not survive at 20 [mu]L L-1 CO2 in air. Air-grown Tm17 cells showed properties similar to wild-type cells in various aspects of the CO2-concentrating mechanism examined. Following transfer from air levels to 20 [mu]L L-1 CO2, however, the mutant cells failed to increase their photosynthetic affinity for Ci. This results in an approximately 10-fold difference in photosynthetic affinity between the wild-type and Tm17 cells under Ci-limiting conditions [the K0.5(Ci) values were 11 and 136 [mu]M, respectively]. Further examination of factors possibly contributing to this low photosynthetic affinity showed that Tm17 cells have no inducible high-affinity HCO3- transport and do not appear to show induction of increased carboxysomal carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities. It appears that a common factor, possibly relating to CO2 detection and/or induction signal, or the HCO3-transport mechanism may have been impaired in the mutant. Complementation results indicate that the mutation responsible for the phenotype has occurred in an 8- to 10-kb EcoRI genomic DNA fragment. 相似文献
3.
Biosynthesis of Ubiquinone in Escherichia coli K-12: Biochemical and Genetic Characterization of a Mutant Unable to Convert Chorismate into 4-Hydroxybenzoate 总被引:3,自引:4,他引:3 下载免费PDF全文
A mutant strain of Escherichia coli unable to carry out the first specific reaction of ubiquinone biosynthesis, that is the conversion of chorismate into 4-hydroxybenzoate, has been isolated. The gene concerned maps at about minute 79 on the E. coli chromosome and has been designated ubiC. This gene is probably the structural gene for chorismate lyase since cell extracts from a transductant strain carrying the ubiC437 mutant allele are unable to convert chorismate into 4-hydroxybenzoate and growing cells of the mutant do not form appreciable quantities of ubiquinone unless 4-hydroxybenzoate is added to the growth medium. 相似文献
4.
Patrick Sénéchal Geneviève Arseneault Alexandre Leroux Susan Lindquist Luis A. Rokeach 《PloS one》2009,4(9)
The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI+] prion of Saccharomyces cerevisiae does not propagate in Δhsp104 cells or in cells overexpressing Hsp104. In this study, we characterized the functional homolog of Hsp104 from Schizosaccharomyces pombe (Sp_Hsp104). As its S. cerevisiae counterpart, Sp_hsp104+ is heat-inducible and required for thermotolerance in S. pombe. Sp_Hsp104 displays low disaggregase activity and cannot propagate the [PSI+] prion in S. cerevisiae. When overexpressed in S. cerevisiae, Sp_Hsp104 confers thermotolerance to Δhsp104 cells and reactivates heat-aggregated proteins. However, overexpression of Sp_Hsp104 does not propagate nor eliminate [PSI+]. Strikingly, [PSI+] was cured by overexpression of a chimeric chaperone bearing the C-terminal domain (CTD) of the S. cerevisiae Hsp104 protein. Our study demonstrates that the ability to untangle aggregated proteins is conserved between the S. pombe and S. cerevisiae Hsp104 homologs, and points to a role of the CTD in the propagation of the S. cerevisiae [PSI+] prion. 相似文献
5.
A strain of Escherichia coli was isolated which was unable to form ubiquinone. This mutant was obtained by selecting strains unable to grow on malate as sole source of carbon. Such strains were further screened by examination of the quinone content of cells grown on a glucose medium. A mutant unable to form vitamin K was also isolated by this procedure. A genetic analysis of the ubiquinoneless strain showed that it possessed two mutations affecting ubiquinone biosynthesis. 相似文献
6.
Biliverdin Reductase Is Heat Resistant and Coexpressed with Constitutive and Heat Shock Forms of Heme Oxygenase in Brain 总被引:1,自引:0,他引:1
Abstract: Two heme oxygenase (HO) isozymes—HO-1, which is a heat shock protein (HSP32), and HO-2—catalyze the isomer-specific production of biliverdin IXα and carbon monoxide. The latter has the potential of functioning as a neurotransmitter, whereas the reduced form of biliverdin, bilirubin, has potent antioxidant activity. Formation of bilirubin is catalyzed by biliverdin reductase (BVR). The reductase is a unique enzyme in being dual pyridine nucleotide and dual pH dependent. Here, we show that the reductase is resistant to thermal stress at both the protein and message level. We further demonstrate that the reductase is coexpressed in cells that display HO-1 and/or HO-2 under normal conditions, as well as in regions and cell types that have the potential to express heat shock-inducible HO-1 protein. Exposure of male rats to 42°C for 20 min did not decrease brain BVR activity, but caused a slight increase in NADPH-and NADH-dependent activities at 1 and 6 h following hyperthermia. High levels of the ~ 1.5-kb BVR mRNA were detected in control brain; it too displayed thermal tolerance. Similarly, the pattern of multiplicity of net charge variants of the enzyme purified from brain of heat-shocked rats did not differ from the control pattern. Immunochemical localization of BVR protein in normal brain correlated well with the presence of HO-1 and/or HO-2 throughout the forebrain, diencephalon, cerebellum, and brainstem regions. There were select neuronal and nonneuronal cells in the substantia nigra and cerebellum that did express the reductase under normal conditions, wherein no HO isozymes could be detected. The same population, however, responded to heat shock by an intense increase in the level of HO-1. We postulate that the constitutive presence of the reductase in this cell population and the overall thermal stability of the enzyme represent a safeguard mechanism in the brain for the prompt conversion of biliverdin to bilirubin under conditions when oxidation of the heme moiety of denatured hemoproteins by HO-1 is accelerated. 相似文献
7.
An Avirulent Mutant of Rabies Virus Is Unable To Infect Motoneurons In Vivo and In Vitro 总被引:9,自引:2,他引:9 下载免费PDF全文
Patrice Coulon Jean-Pierre Ternaux Anne Flamand Christine Tuffereau 《Journal of virology》1998,72(1):273-278
An antigenic double mutant of rabies virus (challenge virus standard [CVS] strain) was selected by successive use of two neutralizing antiglycoprotein monoclonal antibodies, both specific for antigenic site III. This mutant differed from the original virus strain by two amino acid substitutions in the ectodomain of the glycoprotein. The lysine in position 330 and the arginine in position 333 were replaced by asparagine and methionine, respectively. This double mutant was not pathogenic for adult mice. When injected intramuscularly into the forelimbs of adult mice, this virus could not penetrate the nervous system, either by the motor or by the sensory route, while respective single mutants infected motoneurons in the spinal cord and sensory neurons in the dorsal root ganglia. In vitro experiments showed that the double mutant was able to infect BHK cells, neuroblastoma cells, and freshly prepared embryonic motoneurons, albeit with a lower efficiency than the CVS strain. Upon further incubation at 37°C, the motoneurons became resistant to infection by the mutant while remaining permissive to CVS infection. These results suggest that rabies virus uses different types of receptors: a molecule which is ubiquitously expressed at the surface of continuous cell lines and which is recognized by both CVS and the double mutant and a neuron-specific molecule which is not recognized by the double mutant. 相似文献
8.
Strain MR-12 which was derived from Candida cloacae M-l as a mutant unable to assimilate n-alkane showed marked increase in dicarboxylic acid (DC) productivity from n-alkane.Resting cells of strain MR-12 produced 42.7g/liter of n-tetradecane 1,14-dicarboxylic acid (DC-16) from n-hexadecane (n-C16) after 72 hr’ incubation. DC degradation activities of strain M-1 and MR-12 were found to be markedly reduced and their activities against DC-16 decreased to 40% and 10% of that of the parent strain, respectively.Strain M-1 and MR-12 produced DC from the various oxidized derivatives of n-alkane such as alcohol, diol, aldehyde, fatty acid and methyl- or ethylester of fatty acid other than n-alkane.The carbon balance in n-C16 oxidation was determined by using resting cells of strain MR-12 and about 60% of utilized carbon was recovered as DC-16 and about 40% was recovered as CO2. 相似文献
9.
Serological Study of a Mutant of Herpesvirus Unable to Stimulate Thymidine Kinase 总被引:1,自引:4,他引:1 下载免费PDF全文
A mutant of herpes simplex virus which was unable to produce thymidine kinase also failed to produce an antigen which blocked the enzyme-inhibiting activity of antiserum prepared against virus-infected cells. 相似文献
10.
The Role of Pea Chloroplast [alpha]-Glucosidase in Transitory Starch Degradation 总被引:1,自引:1,他引:1 下载免费PDF全文
Pea chloroplastic [alpha]-glucosidase (EC 3.2.1.20) involved in transitory starch degradation was purified to apparent homogeneity by ion exchange, reactive dye, hydroxylapatite, hydrophobic interaction, and gel filtration column chromatography. The native molecular mass and the subunit molecular mass were about 49.1 and 24.4 kD, respectively, suggesting that the enzyme is a homodimer. The enzyme had a Km of 7.18 mM for maltose. The enzyme's maximal activity at pH 7.0 and stability at pH 6.5 are compatible with the diurnal oscillations of the chloroplastic stromal pH and transitory starch accumulation. This pH modulation of the [alpha]-glucosidase's activity and stability is the only mechanism known to regulate starch degradative enzymes in leaves. Although the enzyme was specific for the [alpha]-D-glucose in the nonreducing end as the glycon, the aglycon moieties could be composed of a variety of groups. However, the hydrolysis rate was greatly influenced by the aglycon residues. Also, the enzyme could hydrolyze glucans in which carbon 1 of the glycon was linked to different carbon positions of the penultimate glucose residue. The ability of the [alpha]-glucosidase to hydrolyze [alpha]-1,2- and [alpha]-1,3-glucosidic bonds may be vital if these bonds exist in starch granules because they would be barriers to other starch degradative enzymes. This purified pea chloroplastic [alpha]-glucosidase was demonstrated to initiate attacks on native transitory chloroplastic starch granules. 相似文献
11.
α1-Acid glycoprotein (AAG), an acute phase component of the human serum, is a prominent member of the lipocalin family of proteins showing inflammatory/immunomodulatory activities and promiscuous drug binding properties. Both three-dimensional structure of AAG and its precise biological function are still unknown and only a few endogenous AAG ligands have been described to date. CD spectroscopic studies performed with commercial AAG and the separated genetic variants revealed high-affinity binding of biliverdin (BV) and biliverdin dimethyl ester to the ‘F1/S’ fraction of the protein. The preferential accommodation of the right-handed, P-helicity conformers of the pigments by the protein matrix resulted in strong induced CD activity, which was utilized for estimation of the binding parameters and to locate the binding site. It was concluded that both pigments are bound in the central β-barrel cavity of AAG, held principally by hydrophobic interactions. Possible biological implications of the BV binding ability of AAG with special emphasis on the heme oxygenase-1 pathway are discussed. 相似文献
12.
The Gibberellin Status of lip1, a Mutant of Pea That Exhibits Light-Independent Photomorphogenesis 下载免费PDF全文
Dark-grown seedlings of the lip1 (light independent photomorphogenesis) mutant of Pisum sativum L. display many features of de-etiolated growth and are similar in many respects to wild-type (WT) seedlings grown in the light. The involvement of gibberellins (GAs) with the mutant phenotype was examined by applying GA1 and GA20 to the mutant and WT, and by quantifying endogenous GA1, GA8, GA19, GA20, and GA29 levels in the two genotypes. These experiments were conducted in both the light and the dark. In neither environment could GA application restore elongation in the mutant to that in GA-treated WT plants. Quantification of GAs provided further evidence that the mutant phenotype is not attributable to a deficiency in endogenous GA1. However, dark-grown lip1 seedlings contained lower levels of GA19 and higher levels of GA20 than dark-grown WT plants, whereas in the light, the effect of the mutation on the ratio of GA19 to GA20 was reversed. Thus, there appears to be a complex interaction between the lip1 mutation, the light regime, and the step GA19 to GA20. 相似文献
13.
The Formation of Nitrogen-Fixing Bacteroids Is Delayed but Not Abolished in Soybean Infected by an [alpha]-Ketoglutarate Dehydrogenase-Deficient Mutant of Bradyrhizobium japonicum 总被引:1,自引:0,他引:1 下载免费PDF全文
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained many fewer infected host cells than is typical. At 19 d after inoculation cells infected with the mutant strain were only partially filled with bacteroids and showed large accumulations of starch, but by 32 d after inoculation the host cells infected with the mutant appeared normal. The onset of nitrogen fixation was delayed about 15 d for plants inoculated with LSG184, and the rate, on a per nodule fresh weight basis, reached only about 20% of normal. However, because nodules formed by LSG184 contained only about 20% of the normal number of bacteroids, it could be inferred that the mutant, on an individual bacteroid basis, was fixing nitrogen at near wild-type rates. Therefore, the loss of [alpha]-ketoglutarate dehydrogenase in B. japonicum does not prevent the formation or the functioning of nitrogen-fixing bacteroids in soybean. 相似文献
14.
Recognition of Streptococcal DNA by a Mutant Pneumococcus Unable to Discriminate among Markers in Pneumococcal DNA 下载免费PDF全文
A mutant strain of pneumococcus which fails to discriminate against low-efficiency markers during transformation by homospecific pneumococcal donor DNA retains the wild-type capacity to discriminate against heterospecific (streptococcal) donor DNA. We conclude that discrimination against heterospecific DNA must differ from that against low-efficiency markers by the kind or number of elements being recognized. 相似文献
15.
The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0, resulting from decreased activity of 3-ketoacyl-ACP synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains >40% high-melting-point molecular species (HMP-PG; molecules that contain only 16:0, 16:1-trans, and 18:0 fatty acids)—a trait associated with chilling-sensitive plants—compared with <10% in wild-type Arabidopsis. Although they do not exhibit short-term chilling sensitivity when exposed to low temperatures (2°C to 6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. To test the relevance of HMP-PG to the fab1 phenotype, we used transgenic 16:0 desaturases targeted to the endoplasmic reticulum and the chloroplast to lower 16:0 in leaf lipids of fab1 plants. We produced two lines that had very similar lipid compositions except that one, ER-FAT5, contained high HMP-PG, similar to the fab1 parent, while the second, TP-DES9*, contained <10% HMP-PG, similar to the wild type. TP-DES9* plants, but not ER-FAT5 plants, showed strong recovery and growth following 75 d at 2°C, demonstrating the role of HMP-PG in low-temperature damage and death in fab1, and in chilling-sensitive plants more broadly.In higher plants, the chloroplast membranes that host the light harvesting and electron transport processes of photosynthesis have a characteristically high number of double bonds in the glycerolipid acyl chains. Only ∼10% of the fatty acids that compose the hydrophobic core of the thylakoid bilayer lack double bonds altogether, whereas >80% are polyunsaturated, having two or three double bonds (Ohlrogge et al., 2015). The photosynthetic light reactions produce reactive oxygen species as by-products, and these can degrade polyunsaturated fatty acids, so it is assumed that highly unsaturated membranes are required to support photosynthesis (McConn and Browse, 1998).The glycerolipids in chloroplast membranes are synthesized by two separate pathways. (Browse et al., 1986; Ohlrogge and Browse, 1995). Synthesis de novo of fatty acids takes place in the stroma of chloroplasts, producing 16:0 esterified to acyl carrier protein (ACP). A large proportion of this 16:0-ACP is elongated by 3-keto-acyl-ACP synthase II (KASII) to 18:0-ACP, which is in turn desaturated by stearoyl ACP desaturase to produce 18:1-ACP (Lindqvist et al., 1996; Carlsson et al., 2002). The fatty acids from 16:0-ACP and 18:1-ACP may be used within the chloroplast in the prokaryotic pathway (Kunst et al., 1988; Kim and Huang, 2004) to produce phosphatidic acid (PA). Some of this PA intermediate is used for synthesis of phosphatidylglycerol (PG; Ohlrogge and Browse, 1995; Wada and Murata, 2007), which is the only chloroplast glycerolipid that is produced solely by the prokaryotic pathway. In some plants, including Arabidopsis (Arabidopsis thaliana), PA is also converted to diacylglycerol (DAG), which is the precursor for the synthesis of the other chloroplast glycerolipids, monogalactosyldiacylglycerol (MGD), digalactosyldiacylglycerol (DGD), and sulfoquinovosyldiacylglycerol (SQD; Browse et al., 1986; Ohlrogge and Browse, 1995; Ohlrogge et al., 2015).The second route for chloroplast glycerolipid synthesis, the eukaryotic pathway, begins with export of 16:0 and 18:1 from the chloroplast as CoA thioesters. (Li et al., 2015). In the endoplasmic reticulum (ER), these fatty acids are rapidly incorporated into phosphatidylcholine (PC) by acyl exchange (Bates et al., 2007), and are also used (via PA and DAG intermediates) for the synthesis of all the phospholipids of the extrachloroplast membranes of the cell (Ohlrogge et al., 2015). In addition however, the DAG moiety of PC can be returned to the chloroplast and contribute to the production of MGD, DGD, and SQD required for thylakoid synthesis (Benning, 2009; Roston et al., 2012). The ER-to-chloroplast flux of lipid is reversible to some extent (Browse et al., 1989, 1993).With the exception of the first Δ9 double bond in 18:1-ACP, all the double bonds in the acyl chains are introduced after the initial synthesis of glycerolipid molecules. In Arabidopsis, this involves the action of seven fatty acid desaturases that are integral membrane proteins in the chloroplast and ER (Ohlrogge and Browse, 1995; Wallis and Browse, 2010). Characterization of Arabidopsis fatty acid desaturation (fad) mutants deficient in one or more of these desaturases has shown that the high level of thylakoid unsaturation is essential to photosynthetic function (Murakami et al., 2000; Routaboul et al., 2000). For example, fad2 fad6 double-mutant plants are unable to synthesize polyunsaturated fatty acids and cannot grow autotrophically; however, when grown on Suc as a carbon source, the double mutants are robust plants showing strong leaf and root development (McConn and Browse, 1998). These results indicate that the vast majority of receptor-mediated and transport-related membrane functions required to sustain the organism and induce proper development are adequately supported in the absence of polyunsaturated lipids; photosynthesis is the one process that requires high levels of polyunsaturation. Mutants with smaller changes in unsaturation are often similar to the wild type under typical growth-chamber conditions and reveal their phenotypes only under more extreme conditions (Wallis and Browse, 2002, 2010). Several mutants grow more slowly and become chlorotic at temperatures in the range 2°C to 10°C (Hugly and Somerville, 1992; Routaboul et al., 2000), indicating a role for fatty acid composition in maintaining photosynthesis at these low temperatures.Like other species native to temperate regions, Arabidopsis is chilling resistant and able to grow at temperatures close to 0°C. By contrast, many tropical and subtropical plant species are chilling sensitive and suffer sharp reductions of photosynthesis and extensive tissue damage after even short exposure to low temperatures. Many of the world’s most important crops, including rice (Oryza sativa), maize (Zea mays), and soybean (Glycine max) are chilling sensitive, so a better understanding of the biochemical and genetic factors contributing to this sensitivity has the potential to enhance sustainable food production (Nishida and Murata, 1996; Iba, 2002; Thakur et al., 2010). One hypothesis proposes that chilling sensitivity is a result of the fatty acid composition of chloroplast PG. It is based on the observation that many chilling-sensitive plants contain >30% of PG molecules with only saturated or trans unsaturated fatty acids—16:0, 18:0, and 16:1-Δ3trans (16:1t)—at both the sn-1 and sn-2 positions of the glycerol backbone, referred to as high-melting-point molecular species (HMP-PG; Murata, 1983; Barkan et al., 2006). This name alludes to the fact that HMP-PG species can induce a phase change from liquid crystalline (typical of biological membranes) to gel phase at temperatures well above 0°C and thereby disrupt membrane and cellular function (Murata and Yamaya, 1984). Chilling-resistant plants have <10% HMP species in chloroplast PG (Murata et al., 1982; Murata, 1983; Roughan, 1985).One perspective on the role of HMP-PG in plant temperature responses has come from our investigations of the fatty acid biosynthesis1 (fab1) mutant of Arabidopsis. In this mutant, a hypomorphic mutation in the gene encoding KASII reduces elongation of 16:0-ACP to 18:0-ACP (Carlsson et al., 2002), producing plants that have increased levels of 16:0 in all membrane glycerolipids (Wu et al., 1994). In particular, fab1 plants contain HMP-PG at levels (∼40% to 50% of total PG) similar to those of many chilling-sensitive plant species (Wu and Browse, 1995). Nevertheless, the fab1 mutant does not show typical symptoms of chilling sensitivity and is unaffected, in comparison to wild-type controls, by a range of chilling treatments that kill chilling-sensitive plants; instead, fab1 plants only show a collapse of photosynthesis after >10 d of exposure to 2°C, with the plants dying after several weeks at low temperature (Wu and Browse, 1995; Wu et al., 1997).We have previously screened for genetic suppressors of the fab1 low-temperature phenotype. Most, though not all, of the suppressor mutations substantially reduce the proportion of saturated fatty acids in PG, consistent with the notion that HMP-PG causes eventual death of fab1 plants in the cold (Barkan et al., 2006; Kim et al.,2010; Gao et al., 2015). However, all the suppressors have additional changes, relative to fab1, in the fatty acid compositions of membrane lipids that prevent a clear linkage between reductions in HMP-PG and improved low-temperature survival.Here, we have taken a new approach to investigating the role of HMP-PG in damage and death of fab1 plants at chilling temperatures by using a 16:0-CoA desaturase from Caenorhabditis elegans, FAT-5 (Watts and Browse, 2000), and a glycerolipid desaturase, DES9*15, derived from a cyanobacterial enzyme by directed evolution (Bai et al., 2016). When expressed in the fab1 mutant background, both the FAT-5 enzyme targeted to the ER and the DES9*15 enzyme targeted to the chloroplast reduced leaf 16:0 to near-wild type levels. The fatty acid compositions of individual leaf lipids in plants of both transgenic lines were very similar, with the sole exception of PG. Plants expressing the FAT-5 desaturase retained high levels of HMP-PG, similar to fab1, while plants expressing the DES9*15 enzyme had HMP-PG lowered to levels close to those of the wild type. Like the fab1 mutant, fab1 plants expressing a 16:0 desaturase in the ER lost photosynthetic function over 28 d of exposure to 2°C and showed little capacity for recovery and growth after longer periods at low temperature. By contrast, plants expressing a 16:0 desaturase targeted to the chloroplast retained substantial photosynthetic function, even after 75 d at 2°C, and were subsequently able to resume growth, flower, and set seed upon return to 22°C. These results provide the most direct evidence yet that high levels of HMP-PG cause gradual loss of photosynthesis and eventual death of plants at chilling temperatures. 相似文献
16.
Intraplastidic Localization of the Enzymes That Convert delta-Aminolevulinic Acid to Protoporphyrin IX in Etiolated Cucumber Cotyledons 下载免费PDF全文
The intraplastidic localization of the enzymes that catalyze the conversion of δ-aminolevulinic acid (ALA) to protoporphyrin IX (Proto) is a controversial issue. While some researchers assign a stromal location for these enzymes, others favor a membranebound one. Etiochloroplasts were isolated from etiolated cucumber cotyledons (Cucumis sativus, L.) by differential centrifugation and were purified further by Percoll density gradient centrifugation. Purified plastids were highly intact, and contamination by other subcellular organelles was reduced five- to ninefold in comparison to crude plastid preparations. Most of the ALA to Proto conversion activity was found in the plastids. On a unit protein basis, the ALA to Proto conversion activity of isolated mitochondria was about 2% that of the purified plastids, and could be accounted for by contamination of the mitochondrial preparation by plastids. Lysis of the purified plastids by osmotic shock followed by high speed centrifugation, yielded two subplastidic fractions: a soluble clear stromal fraction and a pelleted yellowish one. The stromal fraction contained about 11% of the plastidic ALA to Proto conversion activity while the membrane fraction contained the remaining 89%. The stromal ALA to Proto conversion activity was in the range of stroma contamination by subplastidic membrane material. Complete solubilization of the ALA to Proto activity was achieved by high speed shearing and cavitation, in the absence of detergents. Solubilization of the ALA to Proto conversion activity was accompanied by release of about 30% of the membrane-bound protochlorophyllide. It is proposed that the enzymes that convert ALA to Proto are loosely associated with the plastid membranes and may be solubilized without the use of detergents. It is not clear at this stage whether the enzymes are associated with the outer or inner plastid membranes and whether they form a multienzyme complex or not. 相似文献
17.
Nuclear Disruption After Infection of Escherichia coli with a Bacteriophage T4 Mutant Unable to Induce Endonuclease II 总被引:2,自引:8,他引:2 下载免费PDF全文
D. Peter Snustad Huber R. Warner Kathleen A. Parson Dwight L. Anderson 《Journal of virology》1972,10(1):124-133
Nuclear disruption after infection of Escherichia coli with a bacteriophage T4 mutant deficient in the ability to induce endonuclease II indicates that either (i) the endonuclease II-catalyzed reaction is not the first step in host deoxyribonucleic acid (DNA) breakdown or (ii) nuclear disruption is independent of nucleolytic cleavage of the host chromosome. M-band analysis demonstrates that the host DNA remains membrane-bound after infection with either an endonuclease II-deficient mutant or T4 phage ghosts. 相似文献
18.
人凝血因子IX突变型研究现状 总被引:1,自引:0,他引:1
血友病B是一种性连锁隐性遗传病,其发病机制是位于X染色体上的人凝血因子IX(hFIX)基因发生了突变,导致血浆中hFIX含量或活性大幅下降,从而使得内源性凝血途径受到阻碍,无法进行正常的凝血。本文综述了hFIX基因及其编码蛋白质的结构和功能,并分类详细论述了血友病B中发现的几种主要突变类型。其中包括奠基者效应造成的突变、调控区的突变、编码区的突变、内含子剪切位点的突变及另外两种较为特殊的突变,同时介绍了这些突变所造成的生物学效应。最后还简要介绍了一种能提高hFIX蛋白凝血活性的突变类型(第338位Arg→Ala),并对其应用作了展望。 相似文献
19.
血友病B是一种性连锁隐性遗传病,其发病机制是位于X染色体上的人凝血因子IX(hFIX)基因发生了突变,导致血浆中hFIX含量或活性大幅下降,从而使得内源性凝血途径受到阻碍,无法进行正常的凝血。文章综述了hFIX基因及其编码蛋白质的结构和功能,并分类详细论述了血友病B中发现的几种主要突变类型。其中包括奠基者效应造成的突变、调控区的突变、编码区的突变、内含子剪切位点的突变及另外两种较为特殊的突变,同时介绍了这些突变所造成的生物学效应。最后还简要介绍了一种能提高hFIX蛋白凝血活性的突变类型(第338位Arg→Ala),并对其应用作了展望。 相似文献
20.
Apoptosis in macrophages is responsible for immune-depression and pathological effects during malaria. Phagocytosis of PRBC causes induction of apoptosis in macrophages through release of cytosolic factors from infected cells. Heme polymer or β-hematin causes dose-dependent death of macrophages with LC50 of 132 µg/ml and 182 µg/ml respectively. The toxicity of hemin or heme polymer was amplified several folds in the presence of non-toxic concentration of methemoglobin. β-hematin uptake in macrophage through phagocytosis is crucial for enhanced toxicological effects in the presence of methemoglobin. Higher accumulation of β-hematin is observed in macrophages treated with β-hematin along with methemoglobin. Light and scanning electron microscopic observations further confirm accumulation of β-hematin with cellular toxicity. Toxicological potentiation of pro-oxidant molecules toward macrophages depends on generation of H2O2 and independent to release of free iron from pro-oxidant molecules. Methemoglobin oxidizes β-hematin to form oxidized β-hematin (βH*) through single electron transfer mechanism. Pre-treatment of reaction mixture with spin-trap Phenyl-N-t-butyl-nitrone dose-dependently reverses the β-hematin toxicity, indicates crucial role of βH* generation with the toxicological potentiation. Acridine orange/ethidium bromide staining and DNA fragmentation analysis indicate that macrophage follows an oxidative stress dependent apoptotic pathway to cause death. In summary, current work highlights mutual co-operation between methemoglobin and different pro-oxidant molecules to enhance toxicity towards macrophages. Hence, methemoglobin peroxidase activity can be probed for subduing cellular toxicity of pro-oxidant molecules and it may in-turn make up for host immune response against the malaria parasite. 相似文献