首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies use a reference task of an isometric maximum voluntary power grip task in a mid-pronated forearm posture to normalize their forearm electromyographic (EMG) signal amplitude. Currently there are no recommended protocols to do this. In order to provide guidance on the topic, we examined the EMG amplitude of six forearm muscles (three flexors and three extensors) during twenty different maximal voluntary efforts that included various gripping postures, force and moment exertions and compared them to a frequently used normalization task of exerting a maximum grip force, termed the reference task. 16 participants (8 male and 8 female, aged 18–26) were recruited for this study. Overall, maximal muscle activity was produced during the resisted moment tasks. When contrasted with the reference task, the resisted moment tasks produced EMG activity that was up to 2.8 times higher (p < 0.05). Although there was no one task that produced greater EMG values than the reference task for all forearm muscles, the resisted flexor and extensor moment tasks produced similar, if not higher EMG activity than the reference task for the three flexors and three extensor muscles, respectively. This suggests that researchers wishing to normalize forearm EMG activity during power gripping prehensile tasks should use resisted flexor and extensor moment tasks to obtain better estimates of the forearm muscles’ maximum electrical activation magnitudes.  相似文献   

2.
Electromyographic (EMG) crosstalk was systematically analyzed to evaluate the magnitude of common signal present between electrode pairs around the forearm. Surface EMG was recorded and analyzed from seven electrode pairs placed circumferentially around the proximal forearm in six healthy individuals. The cross-correlation function was used to determine the amount of common signal, which was found to decrease as the distance between electrode pairs increased, but was not significantly altered by forearm posture (pronation, neutral, supination). Overall, approximately 40% common signal was detected between adjacent electrode pairs (3 cm apart), dropping to about 10% at 6 cm spacing and 2.5% at 9 cm. The magnitude of common signal approached 50% between adjacent electrode pairs over the extensor muscles, while over 60% was observed between neighbouring sites on the flexor aspect of the forearm. Although flexor and extensor EMG amplitude was similar, less than 2% common signal was present between flexor and extensor electrode pairs during both pinch and grasp tasks. Maximum grip force production was not affected by forearm rotation for pinch, but reduced 18% from neutral (mid-prone) to pronation during grasp (p=0.01). In spite of differences in grip force, mean muscle activity did not vary between the three forearm postures during maximum pinch or grasp trials. While this study improved our knowledge of crosstalk and electrode spacing issues, further examination of forearm EMG is required to improve understanding of muscle loading, EMG properties and motor control during gripping tasks.  相似文献   

3.
Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject’s forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation.  相似文献   

4.
Multitasking, where workers are required to perform multiple physical tasks with various levels of cognitive load is common in today's workplace. Simultaneous physical and mental demands are thought to cause task interference and likely increase muscle activity. To test the interfering effects of multitasking, 16 healthy participants performed hand and shoulder exertions with combinations of four grip conditions (no grip, 30% grip with low precision, 30% grip with high precision, and maximal grip) and three shoulder conditions at 90 degrees abduction (maintaining posture, 40% force-controlled moment, 40% posture-controlled moment), with and without the Stroop test while surface EMG was recorded from eight upper extremity muscles. Both 40% MVC shoulder moments increased extrinsic forearm muscle activity by 2-4% MVE (p<0.01). Grip exertion at 30% MVC reduced anterior and middle deltoid activity by 2% MVE (p<0.01). Exerting a constant force against the transducer (force-controlled) required 3-4% MVE greater middle and posterior deltoid activity (p<0.001) compared to supporting an equivalent inertial load at the same shoulder angle (posture-controlled). Performing the mental task (Stroop test) concurrently with either 40% MVC shoulder moments significantly increased trapezius activity by nearly 2% MVE (p<0.05). Interestingly, the Stroop test also reduced all deltoid activity by 1% MVE (p<0.05). The addition of both the Stroop test and force-control shoulder exertion independently reduced maximal grip force by 7% and 10% MVC, respectively. These results suggest that more complex workplace tasks may act to increase muscle load or interfere with task performance. These small but significant findings may play a role in the development of long-term musculoskeletal disorders in the workplace.  相似文献   

5.
Abstract

To improve our understanding on the neuromechanics of finger movements, a comprehensive musculoskeletal model is needed. The aim of this study was to build a musculoskeletal model of the hand and wrist, based on one consistent data set of the relevant anatomical parameters. We built and tested a model including the hand and wrist segments, as well as the muscles of the forearm and hand in OpenSim. In total, the model comprises 19 segments (with the carpal bones modeled as one segment) with 23 degrees of freedom and 43 muscles. All required anatomical input data, including bone masses and inertias, joint axis positions and orientations as well as muscle morphological parameters (i.e. PCSA, mass, optimal fiber length and tendon length) were obtained from one cadaver of which the data set was recently published. Model validity was investigated by first comparing computed muscle moment arms at the index finger metacarpophalangeal (MCP) joint and wrist joint to published reference values. Secondly, the muscle forces during pinching were computed using static optimization and compared to previously measured intraoperative reference values. Computed and measured moment arms of muscles at both index MCP and wrist showed high correlation coefficients (r?=?0.88 averaged across all muscles) and modest root mean square deviation (RMSD?=?23% averaged across all muscles). Computed extrinsic flexor forces of the index finger during index pinch task were within one standard deviation of previously measured in-vivo tendon forces. These results provide an indication of model validity for use in estimating muscle forces during static tasks.  相似文献   

6.
The activity of 17 hand muscles was monitored by electromyography (EMG) in three subjects during hard hammer percussion manufacture of Oldowan tools. Two of the subjects were archaeologists experienced in the replication of prehistoric stone tools. Simultaneous videotapes recorded grips associated with the muscle activities. The purpose of the study was to identify the muscles most likely to have been strongly and repeatedly recruited by early hominids during stone tool-making. This information is fundamental to the identification of skeletal features that may reliably predict tool-making capabilities in early hominids. The muscles most frequently recruited at high force levels for strong precision pinch grips required to control the hammerstone and core are the intrinsic muscles of the fifth finger and the thumb/index finger regions. A productive search for skeletal evidence of habitual Oldowan tool-making behavior will therefore be in the regions of the hand stressed by these intrinsic muscles and in the joint configurations affecting the relative lengths of their moment arms. Am J Phys Anthropol 105:315–332, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The human opposable thumb enables the hand to perform dexterous manipulation of objects, which requires well-coordinated digit force vectors. This study investigated the directional coordination of force vectors generated by the thumb and index finger during precision pinch. Fourteen right-handed, healthy subjects were instructed to exert pinch force on an externally stabilized apparatus with the pulps of the thumb and index finger. Subjects applied forces to follow a force-ramp profile that linearly increased from 0 to 12 N and then decreased to 0 N, at a rate of ±3 N/s. Directional relationships between the thumb and index finger force vectors were quantified using the coordination angle (CA) between the force vectors. Individual force vectors were further analyzed according to their projection angles (PAs) with respect to the pinch surface planes and the shear angles (SAs) within those planes. Results demonstrated that fingertip force directions were dependent on pinch force magnitude, especially at forces below 2 N. Hysteresis was observed in the force-CA relationship for increasing and decreasing forces and fitted with exponential models. The fitted asymptotic values were 156.0±6.6° and 150.8±9.3° for increasing and decreasing force ramps, respectively. The PA of the thumb force vector deviated further from the direction perpendicular to the pinching surface planes than that of the index finger. The SA showed that the index finger force vector deviated in the ulnar-proximal direction, whereas the thumb switched its force between the ulnar-proximal and radial-proximal directions. The findings shed light on the effects of anatomical composition, biomechanical function, and neuromuscular control in coordinating digit forces during precision pinch, and provided insight into the magnitude-dependent force directional control which potentially affects a range of dexterous manipulations.  相似文献   

8.
Effects of speed and precision on electromyography (EMG) in human shoulder muscles were studied during a hand movement task where five points were marked repeatedly with a pencil. Six female subjects performed with three precision demands and at four speeds. Three of the speeds were predefined, while the last speed was performed as fast as possible. The EMG were recorded from 13 shoulder muscles or parts of muscles. Elbow velocity, acceleration and rectified EMG were calculated for each task. The mean elbow velocity and acceleration increased with speed and precision demands. There was an increase in EMG as the speed demand increased for all three precision demands (P < 0.001), and as the precision demand increased for the two highest predefined speed demands (P < 0.05). The combination of a high speed and a high precision demand resulted in the highest EMG. Different EMG levels were attained for the 13 muscles and the supraspinatus muscle always showed the highest normalized EMG. However, analysis of variance showed the same relative increase for all muscles with speed and precision demands. The EMG changes in response to precision demand can only be explained in part by the differences in movement velocity and acceleration, and other factors such as increased co-contraction must also be taken into account. Accepted: 25 May 1998  相似文献   

9.
BackgroundThe trapeziometacarpal joint is subjected to high compressive forces during powerful pinch and grasp tasks due to muscle loading. In addition, muscle contraction is important for stability of the joint. The aim of the present study is to explore if different muscle activation patterns can be found between three functional tasks.MethodsIsometric forces and fine-wire electromyographic (fEMG) activity produced by three intrinsic and four extrinsic thumb muscles were measured in 10 healthy female volunteers. The participants performed isometric contractions in a lateral key pinch, a power grasp and a jar twist task. The tasks were executed with and without EMG recording to verify if electrode placement influenced force production.ResultsA subject-specific muscle recruitment was found which remained largely unchanged across tasks. Extrinsic thumb muscles were significantly more active than intrinsic muscles in all tasks. Insertion of the fEMG electrodes decreased force production significantly in all tasks.ConclusionThe thumb muscles display a high variability in muscle activity during functional tasks of daily life. The results of this study suggest that to produce a substantial amount of force, a well-integrated, but subject-specific, co-contraction between the intrinsic and extrinsic thumb muscles is necessary.  相似文献   

10.
Little is known about the mechanisms leading to chronic neck-shoulder musculoskeletal disorders (MSD). The aim of the present study was to investigate and compare motor function during controlled, low load, repetitive work together with chronic or acute experimental neck-shoulder pain. The clinical study was performed on workers with (n = 12) and without (n = 6) chronic neck-shoulder pain. In the experimental study, experimental muscle pain was induced in healthy subjects by intra-muscular injection of hypertonic saline into the trapezius muscle (n = 10). The assessed parameters related to motor performance were: work task event duration, cutting forces, surface electromyogram (EMG) activity in four shoulder muscles, displacement of the centre of pressure, and arm and trunk 3D movements. For controlled cutting force levels, chronic and acute experimental pain provoked a series of changes: a decreased working rhythm and a protective reorganisation of muscle synergy (experimental study), higher EMG frequency contents which may indicate altered motor unit recruitment, and greater postural activity and a tendency towards increased arm and trunk movements. These pain-related changes can play a role in the development of MSD. The present clinical and experimental study demonstrated similar interactions between motor co-ordination and neck-shoulder pain in occupational settings. We therefore suggest that this experimental model can be used to study mechanisms related to MSD. Information on such modulatory processes may help in the design of new strategies aimed at reducing the development of MSD.  相似文献   

11.
The purpose was to compare the time to failure and muscle activation patterns for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force task) compared with supporting an equivalent inertial load and unrestrained (position task). Fifteen men and women (mean+/-SD; 21.1+/-1.4 yr) performed the force and position tasks at 20% maximal voluntary contraction force until task failure. Maximal voluntary contraction force performed before the force and position tasks was similar (333+/-71 vs. 334+/-65 N), but the time to task failure was briefer for the position task (10.0+/-6.2 vs. 21.3+/-17.8 min, P<0.05). The rate of increase in agonist root-mean-square electromyogram (EMG), EMG bursting activity, rating of perceived exertion, fluctuations in motor output, mean arterial pressure, and heart rate during the fatiguing contraction was greater for the position task. EMG activity of the vastus lateralis (lower leg stabilizer) and medial gastrocnemius (antagonist) increased more rapidly during the position task, but coactivation ratios (agonist vs. antagonist) were similar during the two tasks. Thus the difference in time to failure for the two tasks with the dorsiflexor muscles involved a greater level of neural activity and rate of motor unit recruitment during the position task, but did not involve a difference in coactivation. These findings have implications for rehabilitation and ergonomics in minimizing fatigue during prolonged activation of the dorsiflexor muscles.  相似文献   

12.
Time to failure and electromyogram activity were measured during two types of sustained submaximal contractions with the elbow flexors that required each subject to exert the same net muscle torque with the forearm in two different postures. Twenty men performed the tasks, either by maintaining a constant force while pushing against a force transducer (force task), or by supporting an equivalent load while maintaining a constant elbow angle (position task). The time to failure for the position task with the elbow flexed at 1.57 rad and the forearm horizontal was less than that for the force task (5.2 +/- 2.6 and 8.8 +/- 3.6 min, P = 0.003), whereas it was similar when the forearm was vertical (7.9 +/- 4.1 and 7.8 +/- 4.5 min, P = 0.995). The activity of the rotator cuff muscles was greater during the position tasks (25.1 +/- 10.1% maximal voluntary contraction) compared with the force tasks (15.2 +/- 5.4% maximal voluntary contraction, P < 0.001) in both forearm postures. However, the rates of increase in electromyogram of the accessory muscles and mean arterial pressure were greater for the position task only when the forearm was horizontal (P < 0.05), whereas it was similar for the elbow flexors. These findings indicate that forearm posture influences the difference in the time to failure for the two fatiguing contractions. When there was a difference between the two tasks, the task with the briefer time to failure involved greater rates of increase in accessory muscle activity and mean arterial pressure.  相似文献   

13.
A finger finite element (FE) model was created from CT images of a Japanese male in order to obtain a shape-biofidelic model. Material properties and articulation characteristics of the model were taken from the literature. To predict bone fracture and realistically represent the fracture pattern under various loading conditions, the ESI-Wilkins-Kamoulakos rupture model in PAM-CRASH (ESI Group S.A., Paris, France) was utilized in this study with parameter values of the rupture model determined by compression testing and simulation of porcine fibula. A finger pinch simulation was then conducted to validate the finger FE model. The force-displacement curve and fracture load from the pinch simulation was compared to the result of finger pinch test using cadavers. Simulation results are coincident with the test result, indicating that the finger FE model can be used in an analysis of finger bone fracture during pinch accident. With this model, several pinch simulations were conducted with different pinching object’s stiffness and pinching energy. Conditions for evoking finger bone fracture under pinch loading were then estimated based on these results. This study offers a novel method to predict possible hazards of manufactured goods during the design process, thus finger injury due to pinch loading can be avoided.  相似文献   

14.
Computer mouse work often includes memory demands and contra lateral activity. This study simulated video display unit (VDU) mouse-work and the focus was on forearm muscle activity as a result of standardised postural loads, memory demands and contra lateral activity. Surface and intramuscular electromyography (EMG) were recorded from the right forearm muscles during finger elevation and rest with and without memory demands and with and without contra lateral activity i.e. activity of the left hand. In most situations, memory demand increased activity in the m. extensor carpi radialis brevis and m. flexor digitalis superficialis. Also contra lateral activity increased activity in situations with and without memory demands. While surface EMG level of the m. extensor digitorum communis did not increase during memory demands, intramuscular EMG level increased when memory demands and contra lateral activity was combined. Influence of memory demands and contra lateral activity were most pronounced, in situations where activity levels were small.We presume that it is not only prolonged time of active computer mouse use that is a risk for development of musculoskeletal disorders, but also the time when people interact with the computer mentally or with the 'non-mouse hand', while resting their 'mouse-hand' on the mouse.  相似文献   

15.
The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.  相似文献   

16.
In this study, we compared changes in corticomotor excitability under various task conditions engaging the index finger of each hand. Functional demands were varied, from simple execution to demanding sensory exploration. In a first experiment, we contrasted facilitation in the first dorsal interosseus (FDI) by monitoring changes in motor evoked potentials (MEPs) when participants (young adults, n = 18) performed either a simple button pressing (BP) task or a more demanding tactile exploration (TE) task (i.e., discrimination of raised letters). This experiment showed a large effect of task conditions (p < 0.01) on MEP amplitude but no effect of “Hand”, while latency measurements were unchanged. In fact, MEPs were on average 40% larger during TE (2410 ± 1358 µV) than during BP (1670 ± 1477 µV). The two tasks produced, however, different patterns of electromyographic (EMG) activity, which could have accounted for some of the differences observed. A second experimental session involved a subset of participants (10/18) tested in third task condition: finger movement (FM). The latter task consisted of scanning a smooth surface with the tip of the index finger to reproduce the movements seen with the TE task. The addition of this third condition task confirmed that MEP facilitation seen during TE reflected task-specific influences and not differences in background EMG activity. These results, altogether, provide further insights into the effect of task conditions on corticomotor excitability. Our findings, in particular, stress the importance of behavioural context and tactile exploration in leading to selective increase in corticomotor excitability during finger movements.  相似文献   

17.
The objective of this study was to investigate the low-back loading during common patient-handling tasks. Ten female health care workers without formal training in patient handling performed nine patient-handling tasks including turning, lifting and repositioning a male stroke patient. The low-back loading was quantified by net moment, compression, and shear forces at the L4/L5 joint, measured muscle activity (EMG) in erector spinae muscles and rate of perceived exertion (RPE; Borg scale). The experiments were videotaped with a 50Hz video system using five cameras, and the ground and bedside reaction forces of the health care worker were recorded by means of force platforms and force transducers on the bed. The biomechanical load was calculated using a dynamic 3D seven-segment model of the lower part of the body, and the forces at the L4/L5 joint were estimated by a 14 muscles cross-sectional model of the low back (optimisation procedure). Compression force and torque showed high task dependency whereas the EMG data and the RPE values were more dependent on the subject. The peak compression during two tasks involving lifting the patient (4132/4433N) was significantly higher than all other tasks. Four tasks involving repositioning the patient in the bed (3179/3091/2932/3094N) did not differ, but showed higher peak compression than two tasks turning the patient in the bed (1618/2197N). Thus, in this study the patient-handling tasks could be classified into three groups-characterised by lifting, repositioning or turning-with different levels of peak net torque and compression at the L4/L5 joint.  相似文献   

18.
Risk factors for activity-related tendon disorders of the hand include applied force, duration, and rate of loading. Understanding the relationship between external loading conditions and internal tendon forces can elucidate their role in injury and rehabilitation. The goal of this investigation is to determine whether the rate of force applied at the fingertip affects in vivo forces in the flexor digitorum profundus (FDP) tendon and the flexor digitorum superficialis (FDS) tendon during an isometric task. Tendon forces, recorded with buckle force transducers, and fingertip forces were simultaneously measured during open carpal tunnel surgery as subjects (N=15) increased their fingertip force from 0 to 15N in 1, 3, and 10s. The rates of 1.5, 5, and 15N/s did not significantly affect FDP or FDS tendon to fingertip force ratios. For the same applied fingertip force, the FDP tendon generated more force than the FDS. The mean FDP to fingertip ratio was 2.4+/-0.7 while the FDS to tip ratio averaged 1.5+/-1.0 (p<0.01). The fine motor control needed to generate isometric force ramps at these specific loading rates probably required similar high activation levels of multiple finger muscles in order to stabilize the finger and control joint torques at the force rates studied. Therefore, for this task, no additional increase in muscle force was observed at higher rates. These findings suggest that for high precision, isometric pinch maneuvers under static finger conditions, tendon forces are independent of loading rate.  相似文献   

19.
A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.  相似文献   

20.
The aims of this study were to explore muscle activity levels during different violin repertoires, quantify the general levels bilaterally in upper extremity muscles, and evaluate associations between muscle activity and anthropometrics characteristics. In 18 skilled violin players surface EMG was recorded bilaterally from trapezius (UT), flexor digitorum superficialis (FDS), extensor carpi ulnaris (ECU), extensor digitorum cummunis (EDC), and extensor carpi radialis (ECR) during A and E major scales played in three octaves and Mozart’s Violin Concerto no. 5. To compare side differences the static, median and peak levels of muscle activity were calculated from an amplitude probability distribution function (APDF). This study demonstrated that scales played as standardized tasks can be used to estimate the average muscle activity during violin playing. Comparing results from scales and the music piece revealed a similar muscle activity across all muscles in the music piece and E major scales. The static, median and peak EMG levels were higher in left than in right forearm muscles with left ECU presenting the highest peak load of 30 %MVE. Females demonstrated a higher muscle activity than males, but this was in accordance with differences in anthropometric measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号