首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoprenyl diphosphate synthases are ubiquitous enzymes that catalyze the basic chain-elongation reaction in the isoprene biosynthetic pathway. Pairwise sequence comparisons were made for 6 farnesyl diphosphate synthases, 6 geranylgeranyl diphosphate synthases, and a hexaprenyl diphosphate synthase. Five regions with highly conserved residues, two of which contain aspartate-rich DDXX(XX)D motifs found in many prenyltransferases, were identified. A consensus secondary structure for the group, consisting mostly of alpha-helices, was predicted for the multiply aligned sequences from amino acid compositions, computer assignments of local structure, and hydropathy indices. Progressive sequence alignments suggest that the 13 isoprenyl diphosphate synthases evolved from a common ancestor into 3 distinct clusters. The most distant separation is between yeast hexaprenyl diphosphate synthetase and the other enzymes. Except for the chromoplastic geranylgeranyl diphosphate synthase from Capsicum annuum, the remaining farnesyl and geranylgeranyl diphosphate synthases segregate into prokaryotic/archaebacterial and eukaryotic families.  相似文献   

2.
The gene for the large subunit of glutathione synthetase (EC 6.3.2.3) of Schizosaccharomyces pombe was cloned from a S. pombe genomic DNA library by complementation of cadmium hypersensitivity of a glutathione synthetase deficient mutant of S. pombe. A long open reading frame was found in the cloned DNA sequence. Amino acid sequence predicted from the long open reading frame coincided with amino acid sequences of peptides obtained by V8 protease digestion of the large subunit of the purified glutathione synthetase. The glutathione synthetase deficient mutant which harbored plasmids containing the glutathione synthetase large subunit gene exhibited glutathione synthetase activity higher than the activity in the wild type strain, though the plasmid did not contain the gene for the small subunit of the enzyme.  相似文献   

3.
《Gene》1996,171(2):193-196
Farnesyl pyrophosphate synthetase (FPS; EC 2.5.1.10) produces the 15-carbon farnesyl pyrophosphate which is utilized in the synthesis of sterols, carotenoids, dolichols, coenzyme Q, heme a and farnesylated proteins. We have cloned this mRNA sequence from a maize endosperm cDNA library and determined the 1378-nucleotide (nt) sequence of the DNA fragment. This sequence specifies an open reading frame of 1050 nt encoding FPS. The deduced amino acid sequence shows a high degree of similarity to FPS from a wide range of organisms. Southern blot analysis indicated that there are at least two FPS gene copies in the maize genome. The cloned FPS is expressed preferentially in maize endosperm and is up-regulated in the endosperm mutants, o2 and fl2.  相似文献   

4.
A partial length cDNA encoding farnesyl pyrophosphate synthetase (hpt807) has been isolated from a human fetal liver cDNA library in lambda gt11. DNA sequence analysis reveals hpt807 is 1115 bp in length and contains an open reading frame coding for 346 amino acids before reaching a stop codon, a polyadenylation addition sequence, and the first 14 residues of a poly(A+) tail. Considerable nucleotide and deduced amino acid sequence homology is observed between hpt807 and previously isolated rat liver cDNAs for farnesyl pyrophosphate synthetase. Comparison with rat cDNAs suggests that hpt807 is about 20 bp short of encoding the initiator methionine of farnesyl pyrophosphate synthetase. The human cDNA was cloned into a prokaryotic expression vector and Escherichia coli strain DH5 alpha F'IQ was transformed. Clones were isolated that express an active fusion protein which can be readily observed on protein gels and specifically stained on immunoblots with an antibody raised against purified chicken farnesyl pyrophosphate phosphate synthetase. These data confirm the identity of hpt807 as encoding farnesyl pyrophosphate synthetase. Slot blot analyses of RNA isolated from Hep G2 cells show that the expression of farnesyl pyrophosphate synthetase mRNA is regulated. Lovastatin increases mRNA levels for farnesyl pyrophosphate synthetase 2.5-fold while mevalonic acid, low-density lipoprotein, and 25-hydroxycholesterol decrease mRNA levels to 40-50% of control values.  相似文献   

5.
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested.  相似文献   

6.
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme. Inhibition of sterol synthesis in S. cerevisiae and S. pombe cells or in cultured human fibroblasts by treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor lovastatin resulted in elevated levels of squalene synthetase mRNA in all three cell types.  相似文献   

7.
《Gene》1996,172(2):207-209
A cDNA encoding farnesyl diphosphate (FPP) synthase (FPPS) has been cloned from a cDNA library of Artemisia annua. The sequence analysis showed that the cDNA encoded a protein of 343 amino acid (aa) residues with a calculated molecular weight of 39 420 kDa. The deduced aa sequence of the cDNA was highly similar to FPPS from other plants, yeast and mammals, and contained the two conserved domains found in polyprenyl synthases including FPPS, geranylgeranyl diphosphate synthases and hexaprenyl diphosphate synthases. The expression of the cDNA in Escherichia coli showed enzyme activity for FPPS in vitro.  相似文献   

8.
9.
10.
11.
12.
Glutamine synthetase is encoded by the glnA gene of Escherichia coli and catalyzes the formation of glutamine from ATP, glutamate, and ammonia. A 1922-base pair fragment from a cDNA containing the glnA structural gene for E. coli glutamine synthetase has been sequenced. An open reading frame of 1404 base pairs encodes a protein of 468 amino acid residues with a calculated molecular weight of 51,814. With few exceptions, the amino acid sequence deduced from the DNA sequence agreed very well with the amino acid sequences of several peptides reported previously. The secondary structure predicted for the E. coli enzyme has approximately 36% of the residues in alpha-helices which is in agreement with calculations of approximately 39% based on optical rotatory dispersion data. Comparison of the amino acid sequences of glutamine synthetase from E. coli (468 amino acids) and Anabaena (473 amino acids) (Turner, N. E., Robinson, S. T., and Haselkorn, R. (1983) Nature 306, 337-342) indicates that 260 amino acids are identical and 80 are of the same type (polar or nonpolar) when aligned for maximum homology. Several homologous regions of these two enzymes exist, including the sites of adenylylation and oxidative modification, but the regulation of each enzyme is different.  相似文献   

13.
The possible role of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (the rate-controlling enzyme of cholesterol biosynthesis) in regulating the rate of dolichyl phosphate biosynthesis in rat liver was investigated. Rats were either fasted 48 h or fed diets supplemented with the drug cholestyramine. The activity of HMG-CoA reductase was 5000-fold greater in liver from cholestyramine-fed rats as compared to fasted rats. The activity of dolichyl phosphate synthetase, the prenyl transferase responsible for the biosynthesis of dolichyl phosphate from farnesyl pyrophosphate and isopentenyl pyrophosphate, was similar in both nutritional conditions and was markedly less active than HMG-CoA reductase even in the fasted state. Acetate incorporation into cholesterol was 2200-fold greater in liver slices from cholestyramine-fed rats as compared to fasted rats. By contrast, acetate incorporation into dolichyl phosphate was only 6-fold higher. Further studies suggested that the levels of farnesyl pyrophosphate and isopentenyl pyrophosphate are several hundred-fold greater in liver from cholestyramine-treated rats. From these results, it is concluded that the rate of dolichyl phosphate biosynthesis in rat liver is not regulated by the activity of HMG-CoA reductase but is probably regulated at the level of dolichyl phosphate synthetase.  相似文献   

14.
Determination of the amino acid sequence of beef pancreas tryptophanyl-tRNA synthetase was undertaken through both cDNA and direct peptide sequencing. A full-length cDNA clone containing a 475 amino acid open reading frame was obtained. The molecular mass of the corresponding peptide chain, 53,728 Da, was in agreement with that of beef tryptophanyl-tRNA synthetase, as determined by physicochemical methods (54 kDa). Expression of this clone in Escherichia coli led to tryptophanyl-tRNA synthetase activity in cell extracts. The open reading frame included two sequences analogous to the consensus sequences, HIGH and KMSKS, found in class I aminoacyl-tRNA synthetases. The homology with prokaryotic and yeast mitochondrial tryptophanyl-tRNA synthetases was low and was limited to the regions of the consensus sequences. However, a 90% homology was observed with the recently described rabbit peptide chain release factor (eRF) [Lee et al. (1990) Proc. Natl. Acad. Sci. 87, 3508-3512]. Such a strong homology may reveal a new group of genes deriving from a common ancestor, the products of which could be involved in tRNA aminoacylation (tryptophanyl-tRNA synthetase) or translation termination (eRF).  相似文献   

15.
We have isolated from a Lambda-gt 11 library a human cDNA clone with one open reading frame of about 2400 bases. A stretch of about 350 amino acids in the deduced amino acid sequence is up to 40 percent identical with parts of the known amino acid sequences of E. coli and yeast glutaminyl (Gln)-tRNA synthetase. The isolated cDNA sequence corresponds to an internal section of a 5500 bases long mRNA that codes for a 170 kDa polypeptide associated with Gln-tRNA synthetase. Thus, the human enzyme is about three times larger than the E. coli and two times larger than the yeast Gln-tRNA synthetase. The three enzymes share an evolutionarily conserved core but differ in amino acid sequences linked to the N-terminal and C-terminal side of the core.  相似文献   

16.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

17.
18.
19.
20.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of plasmid-encoded FLP protein and two recombination sites on the plasmid. The recombination site possesses a specific orientation, which is determined by an asymmetric 8-base pair spacer sequence separating two 13-base pair inverted repeats. The outcome or directionality of site-specific recombination is defined by the alignment of two sites in the same orientation during the reaction. Sites containing point mutations or 1-base pair insertions or deletions within the spacer generally undergo recombination with unaltered sites at reduced levels. In contrast, recombination between the two identical mutant sites (where homology is restored) proceeds efficiently in all cases. Sites containing spacer sequences of 10 base pairs or more are nonfunctional under all conditions. A recombination site in which 5 base pairs are changed to yield an entirely symmetrical spacer sequence again recombines efficiently, but only with an identical site. This reaction, in addition, produces a variety of new products which can only result from random alignment of the two sites undergoing recombination, i.e. the reaction no longer exhibits directionality. These and other results demonstrate that both the efficiency and directionality of site-specific recombination is dependent upon homology between spacer sequences of the two recombining sites. This further implies that critical DNA-DNA interactions between the spacer region of the two sites involved in the reaction occur at some stage during site-specific recombination in this system. The specific spacer sequence itself appears to be unimportant as long as homology is maintained; thus, these sequences are probably not involved in recognition by FLP protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号