首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early factors inducing insulin resistance are not known. Therefore, we are interested in studying the secretome of the human visceral adipose tissue as a potential source of unknown peptides and proteins inducing insulin resistance. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry is a high-throughput proteomics technology to generate peptide and protein profiles (MS spectra). To obtain good quality and reproducible data from SELDI-TOF, many factors in the sample pretreatment and SELDI protocol should be optimized. To identify the optimal combination of factors resulting in the best and the most reproducible spectra, we designed an experiment where factors were varied systematically according to a fractional factorial design. In this study, seven protein chip preparation protocol factors were tested in 32 experiments. The main effects of these factors and their interactions contributing to the best quality spectra were identified by ANOVA. To assess the reproducibility, in a subsequent experiment the eight protocols generating the highest quality spectra were applied to samples in quadruplicates on different chips. This approach resulted in the development of an improved chip protocol, yielding higher quality peaks and more reproducible spectra.  相似文献   

2.

Background

Proteomic profiling of complex biological mixtures by the ProteinChip technology of surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS) is one of the most promising approaches in toxicological, biological, and clinic research. The reliable identification of protein expression patterns and associated protein biomarkers that differentiate disease from health or that distinguish different stages of a disease depends on developing methods for assessing the quality of SELDI-TOF mass spectra. The use of SELDI data for biomarker identification requires application of rigorous procedures to detect and discard low quality spectra prior to data analysis.

Results

The systematic variability from plates, chips, and spot positions in SELDI experiments was evaluated using biological and technical replicates. Systematic biases on plates, chips, and spots were not found. The reproducibility of SELDI experiments was demonstrated by examining the resulting low coefficient of variances of five peaks presented in all 144 spectra from quality control samples that were loaded randomly on different spots in the chips of six bioprocessor plates. We developed a method to detect and discard low quality spectra prior to proteomic profiling data analysis, which uses a correlation matrix to measure the similarities among SELDI mass spectra obtained from similar biological samples. Application of the correlation matrix to our SELDI data for liver cancer and liver toxicity study and myeloma-associated lytic bone disease study confirmed this approach as an efficient and reliable method for detecting low quality spectra.

Conclusion

This report provides evidence that systematic variability between plates, chips, and spots on which the samples were assayed using SELDI based proteomic procedures did not exist. The reproducibility of experiments in our studies was demonstrated to be acceptable and the profiling data for subsequent data analysis are reliable. Correlation matrix was developed as a quality control tool to detect and discard low quality spectra prior to data analysis. It proved to be a reliable method to measure the similarities among SELDI mass spectra and can be used for quality control to decrease noise in proteomic profiling data prior to data analysis.
  相似文献   

3.
4.
We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four real datasets from complete, complex SELDI spectra of human blood serum. Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is noniterative and computes the optimal linear discriminant using closed-form equations. The optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra of human blood serum. Replicate experiments of different training/testing splits of each dataset are employed to verify robustness of the algorithm. The probabilistic classification method achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral classification techniques and can provide clues as to the molecular identities of differentially expressed proteins and peptides.  相似文献   

5.
Clustering millions of tandem mass spectra   总被引:1,自引:0,他引:1  
Tandem mass spectrometry (MS/MS) experiments often generate redundant data sets containing multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this redundancy by identifying multiple spectra of the same peptide and replacing them with a single representative spectrum. Analyzing only representative spectra results in significant speed-up of MS/MS database searches. We present an efficient clustering approach for analyzing large MS/MS data sets (over 10 million spectra) with a capability to reduce the number of spectra submitted to further analysis by an order of magnitude. The MS/MS database search of clustered spectra results in fewer spurious hits to the database and increases number of peptide identifications as compared to regular nonclustered searches. Our open source software MS-Clustering is available for download at http://peptide.ucsd.edu or can be run online at http://proteomics.bioprojects.org/MassSpec.  相似文献   

6.
Surface-enhanced laser desorption/ionization (SELDI) time-of-flight (TOF) mass spectrometry (MS) has been widely applied for conducting biomarker research with the goal of discovering patterns of proteins and/or peptides from biological samples that reflect disease status. Many diseases, ranging from cancers of the colon, breast, and prostate to Alzheimer's disease, have been studied through serum protein profiling using SELDI-based methods. Although the results from SELDI-based diagnostic studies have generated a great deal of excitement and skepticism alike, the basis of the molecular identities of the features that underpin the diagnostic potential of the mass spectra is still largely unexplored. A detailed investigation has been undertaken to identify the compliment of serum proteins that bind to the commonly used weak cation exchange (WCX-2) SELDI protein chip. Following incubation and washing of a standard serum sample on the WCX-2 sorbent, proteins were harvested, digested with trypsin, fractionated by strong cation exchange liquid chromatography (LC), and subsequently analyzed by microcapillary reversed-phase LC coupled online with an ion-trap mass spectrometer. This analysis resulted in the identification of 383 unique proteins in the WCX-2 serum retentate. Among the proteins identified, 50 (13%) are documented clinical biomarkers with 36 of these (72%) identified from multiple peptides.  相似文献   

7.
目的:探讨用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术筛查肺癌血清特异性蛋白质的临床意义。方法:应用SELDI-TOF-MS对35例正常对照组、43例治疗前肺癌病人的血清样品进行蛋白质指纹图谱测定,用BioMarker Wizard 3.01及BioMarker Parrern System 5.01分析软件对测得的数据进行处理及建立诊断模型。结果:共检测到251个蛋白质峰,筛选出差异蛋白质峰11个,以质荷比(m/z)分别为M2799_26,M3227_41,M5739_70和M8164_30的4个蛋白质峰为依据组合构建分类决策树模型,分出5个终节点。决策树模型的原始判别总准确率为91.0%(71/78),敏感性为88.4%(38/43),特异性为94.3%(33/35);交叉验证总准确率为85.9%(67/78),敏感性为88.4%(38/43),特异性为82.9%(29/35)。结论:SELDI-TOF-MS在肺癌血清特异性蛋白质的筛选及诊断模型的建立有一定的临床意义。  相似文献   

8.
Natural or synthetic cyclic peptides often possess pronounced bioactivity. Their mass spectrometric characterization is difficult due to the predominant occurrence of non-proteinogenic monomers and the complex fragmentation patterns observed. Even though several software tools for cyclic peptide tandem mass spectra annotation have been published, these tools are still unable to annotate a majority of the signals observed in experimentally obtained mass spectra. They are thus not suitable for extensive mass spectrometric characterization of these compounds. This lack of advanced and user-friendly software tools has motivated us to extend the fragmentation module of a freely available open-source software, mMass (http://www.mmass.org), to allow for cyclic peptide tandem mass spectra annotation and interpretation. The resulting software has been tested on several cyanobacterial and other naturally occurring peptides. It has been found to be superior to other currently available tools concerning both usability and annotation extensiveness. Thus it is highly useful for accelerating the structure confirmation and elucidation of cyclic as well as linear peptides and depsipeptides.  相似文献   

9.
10.
SELDI protein profiling experiments can be used as a first step in studying the pathogenesis of various diseases such as cancer. There are a plethora of software packages available for doing the preprocessing of SELDI data, each with many options and written from different signal processing perspectives, offering many researchers choices they may not have the background or desire to make. Moreover, several studies have shown that mistakes in the preprocessing of the data can bias the biological interpretation of the study. For this reason, we conduct a large scale evaluation of available signal processing techniques to establish which are most effective. We use data generated from a standard, published simulation engine so that “truth” is known. We select the top algorithms by considering two logical performance metrics, and give our recommendations for research directions that are likely to be most promising. There is considerable opportunity for future contributions improving the signal processing of SELDI spectra.  相似文献   

11.
Introduction: Although prostate cancer constitutes one of the most important, death-related diseases in the male population, there is still a need for identification of sensitive biomarkers that could precociously detect the disease and differentiate aggressive from indolent cancers, in order to decrease overtreatment. Proteomics research has improved understanding on mechanisms underlying tumorigenesis, cancer cells migration and invasion potential, and castration resistance. This review has focused on proteomic studies of prostate cancer published in the recent years, with a special emphasis on determination of biomarkers for cancer progression and diagnosis.

Areas covered: Shotgun and targeted-proteomic studies of prostate cancer in different matrices are reviewed, i.e., prostate tissue, prostate cell lines, blood (serum and plasma), urine, seminal plasma, and exosomes. The most important biomarkers for cancer diagnosis and aggressiveness characterization are highlighted.

Expert commentary: In general, results demonstrate alteration in cell cycle control, DNA repair, proteasomal degradation, and metabolic activity. However, these studies suffer from low reproducibility due to heterogeneity of the cancer itself, as well as to techniques utilized for protein identification/quantification. Downstream confirmatory studies in separate cohorts are warranted in order to demonstrate accuracy of these results.  相似文献   


12.
In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu.  相似文献   

13.
目的:借助于蛋白质指纹技术及MATLAB软件探索预测FOLFOX4方案治疗大肠癌耐药的可能性。方法:选择12例曾手术并接受FOLFOX4方案化疗并有确切疗效的大肠癌患者,应用CM10弱阳离子芯片结合表面增强飞行时间质谱(SELDI-TOF-MS)技术于化疗前检测患者血清样本的蛋白质谱,动态观察该方案化疗后2周至半年内,根据实体瘤近期疗效标准分为用药稳定组(SD)(7例)和无效组(PD)(5例),应用Biomarker Wizard软件得出两组间有统计学意义的差异指纹。用MATLAB软件进行多项式曲线拟合得出每个差异指纹的拟合曲线及曲线方程。结果:术后稳定组与无效组相比有3个蛋白质峰有显著差异性,M/Z分别为1204、2868、4176,其中与稳定组相比,无效组上调的峰M/Z为2868,下调的峰M/Z为1204和4176。用MATLAB软件进行多项式曲线拟合得出每个差异指纹的曲线且曲线方程均呈线性的函数关系。结论:MATLAB软件根据实测值获得的曲线方程及曲线呈有意义的线性函数关系,因此借助于蛋白质指纹技术预测FOLFOX4方案治疗大肠癌的耐药是可行的。以此为平台扩大病例数进一步验证即可获得能应用于临床的预测指...  相似文献   

14.
Mass spectrometric profiling using ProteinChip and magnetic beads has rapidly grown over the past years, particularly to generate serum profiles for cancer diagnosis. The molecular weights of these distinguishing peaks are usually under 30 kDa. To identify those low molecular weight proteins and peptides is important for specific assays to be developed and increases biological insight. In this study, low molecular weight proteins and peptides from serum were purified by a combination of weak cation exchange magnetic beads and high performance liquid chromatography. The purified proteins and peptides were analyzed by 1D SDS PAGE, SELDI and LC-MS/MS. 246 proteins were identified from the HPLC fractions by LC-MS/MS. 95(38.62%) proteins were first identified in serum compare with Sys-BodyFluid database. 11(11/96) proteins were documented cancer associated proteins. We also observed about 109 proteins/peptides in SELDI mass spectrum, and 13 of the SELDI features were identified.  相似文献   

15.
SELDI-TOF mass spectrometer''s compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.  相似文献   

16.
Searching tandem mass spectra against a protein database has been a mainstream method for peptide identification. Improving peptide identification results by ranking true Peptide-Spectrum Matches (PSMs) over their false counterparts leads to the development of various reranking algorithms. In peptide reranking, discriminative information is essential to distinguish true PSMs from false PSMs. Generally, most peptide reranking methods obtain discriminative information directly from database search scores or by training machine learning models. Information in the protein database and MS1 spectra (i.e., single stage MS spectra) is ignored. In this paper, we propose to use information in the protein database and MS1 spectra to rerank peptide identification results. To quantitatively analyze their effects to peptide reranking results, three peptide reranking methods are proposed: PPMRanker, PPIRanker, and MIRanker. PPMRanker only uses Protein-Peptide Map (PPM) information from the protein database, PPIRanker only uses Precursor Peak Intensity (PPI) information, and MIRanker employs both PPM information and PPI information. According to our experiments on a standard protein mixture data set, a human data set and a mouse data set, PPMRanker and MIRanker achieve better peptide reranking results than PetideProphet, PeptideProphet+NSP (number of sibling peptides) and a score regularization method SRPI. The source codes of PPMRanker, PPIRanker, and MIRanker, and all supplementary documents are available at our website: http://bioinformatics.ust.hk/pepreranking/. Alternatively, these documents can also be downloaded from: http://sourceforge.net/projects/pepreranking/.  相似文献   

17.
18.
《Journal of Proteomics》2008,71(6):637-646
Cervical mucous, produced in the region where cervical neoplasia occurs, is thought to be a good choice for discovery of biomarkers to improve cervical cancer screening. In this study, SELDI-TOF MS analysis was used to evaluate parameters for protein profiling of mucous. Proteins were extracted from mucous collected with Weck-Cel® sponges. Several parameters like extraction reagent, loading protein concentration, matrix type, bind/wash conditions and sample fractionation, on different protein chip surfaces were evaluated. SELDI peak number and consistency in the resulting spectra were used to evaluate each condition. Analysis of spectra generated by different protein chips revealed an average of 30 peaks in the 2.5–30 kDa mass range using sinnapinic acid in the unfractionated sample. Sample concentration and buffer conditions evaluated did not lead to large alterations in the profiles. Quality control spectra were reproducible with intra- and inter-assay intensity CV for CM10, H50 and Q10 arrays being less than 20% and 30% respectively. IMAC30-Cu chips had higher intra- and inter-assay CV's at 25% and 35%. Current data showed that optimizing pre-analytical parameters can help in standardization and reproducibility of protein profiles produced by cervical mucous, and thus can be used for protein biomarker discovery with the SELDI platform.  相似文献   

19.
A method for the rapid correlation of tandem mass spectra to a list of protein sequences in a database has been developed. The combination of the fast and accurate computational search algorithm, X!Tandem, and a Linux cluster parallel computing environment with PVM or MPI, significantly reduces the time required to perform the correlation of tandem mass spectra to protein sequences in a database. A file of tandem mass spectra is divided into a specified number of files, each containing an equal number of the spectra from the larger file. These files are then searched in parallel against a protein sequence database. The results of each parallel output file are collated into one file for viewing through a web interface. Thousands of spectra can be searched in an accurate, practical, and time effective manner. The source code for running Parallel Tandem utilizing either PVM or MPI on Linux operating system is available from http://www.thegpm.org. This source code is made available under Artistic License from the authors.  相似文献   

20.
With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of 'signature' protein profiles specific to each pathologic state (e.g. normal vs. cancer) or differential profiles between experimental conditions (e.g. treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data-analytic strategy for discovering protein biomarkers based on such high-dimensional mass spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data-analytic strategy takes properties of the SELDI mass spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After this pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary predictors and construct a summary classifier. We empirically evaluate sensitivity and specificity of the resulting summary classifiers with a test dataset that is independent from the training dataset used to construct the summary classifiers. The proposed method performed nearly perfectly in distinguishing cancer and benign hyperplasia from normal. In the classification of cancer vs. benign hyperplasia, however, an appreciable proportion of the benign specimens were classified incorrectly as cancer. We discuss practical issues associated with our proposed approach to the analysis of SELDI output and its application in cancer biomarker discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号