首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystems - Dissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules...  相似文献   

2.
Ecosystems - In residential ecosystems, land management can help regulate climate and improve water quality by promoting the accumulation of nutrients in the soil. We tested how varying intensity...  相似文献   

3.
Slow rates of plant production and decomposition in ombrotrophic bogs are believed to be partially the result of low nutrient availability. To test the effect of nutrient availability on decomposition, carbon dioxide (CO2) flux dynamics, microbial biomass, and nutrients, we added nitrogen (N) with phosphorus (P) and potassium (K), to prevent limitation of the latter 2 nutrients, over 2 growing seasons to plots at Mer Bleue peatland, Ontario, Canada. After the first growing season, increasing N fertilization (with constant P and K) decreased in vitro CO2 production potential and increased microbial biomass measured with a chloroform fumigation-extraction technique in the upper peat profile, while by the end of the second season, CO2 production potential was increased in response to N plus PK treatment, presumably due to more easily decomposable newly formed plant material. In situ CO2 fluxes measured using chamber-techniques over the second year corroborated this presumption, with greater photosynthetic CO2 uptake and ecosystem respiration (ER) during high N plus PK treatments. The more efficient microbial community, with slower CO2 production potential and larger biomass, after the first year was characterized by larger fungal biomass measured with signature phospholipid fatty acids. The majority of N was likely quickly sequestered by the vegetation and transferred to dissolved organic forms and microbial biomass in the upper parts of the peat profile, while additional P relative to controls was distributed throughout the profile, implying that the vegetation at the site was N limited. However, in situ CO2 flux data suggested the possibility of P or NPK limitation. We hypothesize that nutrient deposition may lead to enhanced C uptake by altering the microbial community and decomposition, however this pattern disappears through subsequent changes in the vegetation and production of more readily decomposable plant tissues.  相似文献   

4.
Keller  C. Kent 《Ecosystems》2019,22(8):1691-1705
Ecosystems - In terrestrial ecosystems, vascular plants photosynthesize and respire to produce organic matter and CO2, respectively. Fractions of these products dissolve and are processed...  相似文献   

5.
Recent high-latitude warming is increasing the vulnerability of permafrost to thaw, which is amplified by local disturbances such as fire. However, the long-term ecological effects and carbon dynamics are not well understood. Here we present a 2200-year record of pollen, plant macrofossils, testate amoebae, and apparent carbon (C) accumulation rates from two peat cores in a collapse-scar bog (thermokarst) near Fairbanks, Alaska. A black spruce ecosystem with low apparent C accumulation rates existed on the site during the first ~1500 years of the record. We identify two thaw events, which are linked to local fires. Permafrost aggraded rapidly following the first thaw, which we attribute to local vegetation feedbacks and a cooler climate. The second thaw event at 525 cal y BP is preceded by a stand-replacing fire, as evidenced by a drastic decline in Picea and an initial increase in Epilobium, Salix, and ericaceous shrubs, followed by a sustained increase in Populus. Locally, the forest does not recover for more than 100 years, and the site has remained permafrost-free for the last 500 years. Following thaw, average apparent C accumulation rates (60 to >100 g C m?2 y?1) are 5–6 times higher than average boreal C accumulation rates, indicating that peat C accumulation rates can remain substantially elevated for much more than a century following thaw. The low apparent C accumulation for the formerly forested, permafrost peat (<5 g C m?2 y?1) may suggest that C accumulation increases substantially following thaw, but it remains unknown whether deep peat C loss occurred immediately following thaw. Well-preserved Sphagnum peat dominates during this period of rapid accumulation, except for an interval from ~400 to 275 cal y BP which alternates between Sphagnum and vascular plant-dominated peat and wetter, minerotrophic conditions. A decline in Picea pollen during this interval and again ~100 cal y BP suggests a decrease in suitable substrate for tree growth likely attributable to thermokarst expansion on the collapse-scar margin. These findings suggest that the combined effects of fire and thermokarst will result in a long-term reduction of spruce ecosystems in interior Alaska.  相似文献   

6.
Dissolved organic carbon (DOC) plays a key role in the peatland carbon balance and serves numerous ecological and chemical functions including acting as a microbial substrate. In this study, we quantify the concentration, biodegradability, and intrinsic properties of DOC obtained from peat, fresh material, and litter from nine species of ombrotrophic bog vegetation. Potential biodegradability was assessed by incubating vegetation extracts for 28 days in the dark and measuring percent DOC loss as the fraction of biodegradable DOC (%BDOC) while DOC properties were characterized using UV–Vis absorbance and fluorescence measurements. The mean initial DOC concentration extracted differed significantly among species (P < 0.05) and was significantly higher in fresh material, 217 ± 259 mg DOC l?1, than either litter or peat extracts with mean concentrations of 82.1 ± 117 mg DOC l?1 and 12.7 ± 1.0 mg DOC l?1, respectively (P < 0.05). %BDOC also differed significantly among species (P < 0.05) and ranged from 52 to 73% in fresh cuttings with the greatest fraction observed in S. magellanicum; 22–46% in litter; and 24% in peat. The majority of variability (82.5%) in BDOC was explained by initial absorbance at 254 nm and total dissolved nitrogen concentration which was further resolved into significant non-linear relationships between %BDOC and both humic-like and protein-like DOC fractions (P < 0.05). Our results highlight the extremely heterogeneous nature of the surface vegetation-derived DOC input in peatlands and stress the importance of vegetation species in peatland ecosystem function.  相似文献   

7.
8.
Soil Carbon Dioxide Flux in Antarctic Dry Valley Ecosystems   总被引:2,自引:0,他引:2  
Parsons  Andrew N.  Barrett  J. E.  Wall  Diana H.  Virginia  Ross A. 《Ecosystems》2004,7(3):286-295
The Antarctic dry valleys of southern Victoria Land are extreme desert environments where abiotic factors, such as temperature gradients, parent material, and soil water dynamics, may have a significant influence on soil carbon dioxide (CO2) flux. Previous measurements of soil respiration have demonstrated very low rates of CO2 efflux, barely above detection limits. We employed a modified infrared gas-analyzer system that enabled detection of smaller changes in CO2 concentration in the field than previously possible. We measured diel CO2 fluxes and monitored soil microclimate at three sites in Taylor Valley. Soil CO2 flux ranged from –0.1 to 0.15 mol m–2 s–1. At two of the three sites, we detected a physically driven flux associated with diel variability in soil temperature. At these sites, CO2 uptake (negative flux) was associated with dropping soil temperatures, whereas CO2 evolution (positive flux) was associated with increases in soil temperature. These observations are corroborated by laboratory experiments that suggest that CO2 flux is influenced by physically driven processes. We discuss four potential mechanisms that may contribute to physically driven gas exchange. Our results suggest there are strong interactions between biological and abiotic controls over soil CO2 flux in terrestrial ecosystems of the Antarctic dry valleys, and that the magnitude of either may dominate depending on the soil environment and biological activity.  相似文献   

9.
A simple model based on HCO3 transport has been developed to relate photosynthesis and inorganic carbon fluxes for the marine cyanobacterium, Synechococcus sp. Nägeli (strain RRIMP N1). Predicted relationships between inorganic carbon transport, CO2 fixation, internal carbonic anhydrase activity, and leakage of CO2 out of the cell, allow comparisons to be made with experimentally obtained data. Measurements of inorganic carbon fluxes and internal inorganic carbon pool sizes in these cells were made by monitoring time-courses of CO2 changes (using a mass spectrometer) during light/dark transients. At just saturating CO2 conditions, total inorganic carbon transport did not exceed net CO2 fixation by more than 30%. This indicates CO2 leakage similar to that estimated for C4 plants.

For this leakage rate, the model predicts the cell would need a conductance to CO2 of around 10−5 centimeters per second. This is similar to estimates made for the same cells using inorganic carbon pool sizes and CO2 efflux measurements. The model predicts that carbonic anhydrase is necessary internally to allow a sufficiently fast rate of CO2 production to prevent a large accumulation of HCO3. Intact cells show light stimulated carbonic anhydrase activity when assayed using 18O-labeled CO2 techniques. This is also supported by low but detectable levels of carbonic anhydrase activity in cell extracts, sufficient to meet the requirements of the model.

  相似文献   

10.
陆地生态系统地下碳输入与输出过程研究进展   总被引:3,自引:0,他引:3  
生态系统地下碳输入与输出过程是陆地生态系统碳分配和转化的核心,并直接影响着全球碳循环。陆地生态系统凋落物、根系周转、根系分泌物、土壤有机碳、土壤微生物和土壤呼吸是地下碳输入与输出过程中的重要组成部分。由于这些组分非常复杂且其研究技术和方法受到限制,目前人们对陆地生态系统地下碳输入与输出过程尚缺乏全面的认识,故在陆地生态系统碳循环研究中存在诸多的不确定性。该文概述了凋落物、根系周转、根系分泌物、土壤有机碳、土壤微生物和土壤呼吸的研究方法,以及它们对气候变化的响应,探讨了陆地生态系统地下碳输入与输出过程中的研究难点,并对未来需要深入探究的一些领域进行了展望。  相似文献   

11.
There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This “browning” phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances (“Super Hume”) as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems.  相似文献   

12.
Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model   总被引:34,自引:3,他引:34  
The movement of dissolved organic carbon (DOC) through soils is an important process for the transport of carbon within ecosystems and the formation of soil organic matter. In some cases, DOC fluxes may also contribute to the carbon balance of terrestrial ecosystems; in most ecosystems, they are an important source of energy, carbon, and nutrient transfers from terrestrial to aquatic ecosystems. Despite their importance for terrestrial and aquatic biogeochemistry, these fluxes are rarely represented in conceptual or numerical models of terrestrial biogeochemistry. In part, this is due to the lack of a comprehensive understanding of the suite of processes that control DOC dynamics in soils. In this article, we synthesize information on the geochemical and biological factors that control DOC fluxes through soils. We focus on conceptual issues and quantitative evaluations of key process rates to present a general numerical model of DOC dynamics. We then test the sensitivity of the model to variation in the controlling parameters to highlight both the significance of DOC fluxes to terrestrial carbon processes and the key uncertainties that require additional experiments and data. Simulation model results indicate the importance of representing both root carbon inputs and soluble carbon fluxes to predict the quantity and distribution of soil carbon in soil layers. For a test case in a temperate forest, DOC contributed 25% of the total soil profile carbon, whereas roots provided the remainder. The analysis also shows that physical factors—most notably, sorption dynamics and hydrology—play the dominant role in regulating DOC losses from terrestrial ecosystems but that interactions between hydrology and microbial–DOC relationships are important in regulating the fluxes of DOC in the litter and surface soil horizons. The model also indicates that DOC fluxes to deeper soil layers can support a large fraction (up to 30%) of microbial activity below 40 cm. Received 14 January 2000; accepted 6 September 2000  相似文献   

13.
Soil mineral weathering may serve as a sink for atmospheric carbon dioxide (CO2). Increased weathering of soil minerals induced by elevated CO2 concentration has been reported previously in temperate areas. However, this has not been well documented for the tropics and subtropics. We used model forest ecosystems in open-top chambers to study the effects of CO2 enrichment alone and together with nitrogen (N) addition on inorganic carbon (C) losses in the leachates. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in increased annual inorganic C export through leaching below the 70 cm soil profile. Compared to the control without any CO2 and N treatments, net biocarbonate C (HCO3 -C) loss increased by 42%, 74%, and 81% in the high CO2 concentration treatment in 2006, 2007, and 2008, respectively. Increased inorganic C export following the exposure to the elevated CO2 was related to both increased inorganic C concentrations in the leaching water and the greater amount of leaching water. Net annual inorganic C (HCO3 -C and carbonate C: CO3 2−-C) loss via the leaching water in the high CO2 concentration chambers reached 48.0, 49.5, and 114.0 kg ha−1 y−1 in 2006, 2007, and 2008, respectively, compared with 33.8, 28.4, and 62.8 kg ha−1 y−1 in the control chambers in the corresponding years. The N addition showed a negative effect on the mineral weathering. The decreased inorganic C concentration in the leaching water and the decreased leaching water amount induced by the high N treatment were the results of the adverse effect. Our results suggest that tropical forest soil systems may be able to compensate for a small part of the atmospheric CO2 increase through the accelerated processing of CO2 into HCO3 -C during soil mineral weathering, which might be transported in part into ground water or oceans on geological timescales.  相似文献   

14.
土地利用变化对草原生态系统土壤碳贮量的影响   总被引:94,自引:4,他引:90       下载免费PDF全文
本文概述了长期非持续性土地利用(草原开垦和过度放牧)对草原生态系统土壤碳贮量影响的有关研究成果和进展,指出了今后这方面研究的重点内容和对策。  相似文献   

15.
Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September–December 2013–2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1 and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 to 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.  相似文献   

16.
我国森林生态系统碳储量和碳平衡的研究方法及进展   总被引:30,自引:0,他引:30  
森林在全球碳循环中起着十分重要的作用。从现存生物量的角度出发,综述了我国森林生态系统碳储量和碳平衡研究采用的主要方法及手段,以及在该领域的研究现状,并从实际情况出发探讨我国未来研究的发展趋势和亟待解决的一些问题。  相似文献   

17.
森林生态系统中枯落物分解速率研究方法   总被引:14,自引:3,他引:14  
刘增文 《生态学报》2002,22(6):954-956
林地枯落物分解率是研究森林生态系统养分循环的重要内容之一,传统的尼龙网袋实测法虽然能提供某一具体年份枯落物分解率的准确数据,但因其费时费力且不能反映整个历史时期的平均水平而难以推广,基于林地枯落物积累平衡原理,首次提出了利用枯落物平衡模型推算枯落物分解率的方法(简称平衡法),并将之应用于黄土残塬沟壑区刺槐林地枯落物分解率的计算。这种由平衡法推算所得枯落物分解率能反映林地的历史水平,弥补了尼龙网袋实测法的不足,建议在森林生态系统研究中推广应用。  相似文献   

18.
Geotropically induced phase-shifts in circumnutations of Heliauthus annuus hypocotyls are studied. - Theoretical deductions from a previously developed theory for geotropical movements are made for the case of a short gravitational stimulation in different phase positions of an oscillating hypocotyl. - Experimental studies are performed to test the theoretical results. - The conclusions are drawn, that the theory mentioned can satisfactorily describe geotropically induced phase-shifts. A comparison with phase-shifts in photoperiodic systems is made.  相似文献   

19.
Experimental Approach to the Role of Protozoa in Aquatic Ecosystems   总被引:3,自引:0,他引:3  
In enrichment batch experiments, samples from three water bodieswere alternatively supplemented by various amounts of organicmaterial and incubated at 20 C. Colpidium campylum reached itshighest total cell volumes in cultures with the highest initialtotal cell volumes in cultures with the highest initial concentrationsof organics; Cyclidium glaucoma preferred lower concentrations;and Glaucoma chattoni occupied the intermediate position. Noneof the species preferred any special type of organic material.In two-stage continuous-flow units, a mixed culture of bacteriawas kept in stage I and the clones of ciliates were maintainedin stage II. The interrelations between the total cell volumesof ciliates at various concentrations of bactopeptone were inaccordance with the results from the enrichment experiments.Since the growth of bacteria continued in the presence of ciliates,a four-stage apparatus was constructed in which a bacterialculture was raised and diluted in three stages before enteringthe culture ofColpidium. The bacterial growth in the presenceof Colpidium was not eliminated even by this arrangement, asdemonstrated by dosing antibiotics along with bacteria. An effectof ciliate metabolites on bacterial growth rate is suggested,completing a metabolic cycle in the bacteria-protozoa system.  相似文献   

20.
对虾养殖围隔生态系浮游生物群落有机碳的代谢   总被引:1,自引:0,他引:1  
浮游生物是虾池养殖生态系统生物群落的重要组分 ,在系统的物质循环和能量流动中发挥着重要作用。开展对虾养殖水体浮游生物群落有机碳代谢的研究 ,对阐明虾池养殖生态系统的结构与功能以及指导水质管理均有重要意义。本采用原位实验生态学方法 ,用中尺度实验围隔开展了研究。1 材料与方法1 1 实验围隔及管理实验围隔为 5m× 5m的陆基围隔。以高密度两面涂塑的聚乙烯编织布做围隔幔 ,围隔幔下部埋入池塘底泥 0 5m ,并以木桩和青竹为支架架设于池塘中 (围隔内水深 1 0m )。为了模拟池塘水体的自然混合状况 ,在围隔中间架设了一台 90W…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号